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Abstract

A coalgebraic definition of finite and infinite trace semantics for probabilistic tran-
sition systems has recently been given using a certain Kleisli category. In this paper
this semantics is developed using a coalgebraic method which is an instance of general
determinization. Once applied to discrete systems, this point of view allows the exploita-
tion of the determinized structure by up-to techniques. Thereby it becomes possible to
algorithmically check the equivalence of two finite probabilistic transition systems.

Introduction

Automata theory is certainly one of the most explored branches of computer science. To
meet the growing needs in probabilistic programming, model checking, or randomized
algorithms, many kinds of automata are shaped with a probabilistic behaviour. Here is
one of them: a generative probabilistic transition system (PTS) consists of a state space
X , where every state x can either terminate or transition to any state, with a certain
probability. Each non-terminating transition outputs a letter a from an alphabet A. With
this informal definition, one can see that given a state x , each word w is generated by
the automaton with a certain probability ¹xº(w). The function w 7→ ¹xº(w) is itself a
probability distribution if we take into account both finite and infinite words. The aim
of this paper is to study the formal definition of these semantics, referred to as the trace
semantics.

Automata will be described as usual using graphs. Each state is pictured by a circle
and there is a distinguished terminal state ∗ which is double-circled. A transition is rep-
resented by an arrow labeled with its probability. Non-terminating arrows are further
labeled with one transition letter. Consider as a first example the following PTS:

x ∗a,1/2
1/2

One can intuitively associate trace semantics to this automaton. Given the above PTS,
the only reasonable semantics is ¹xº(an) = 1

2n+1 . It is clearly a probability measure over
A∗. Actually, some strange phenomena can occur if |A| ≥ 2 because of the fact that AN is
uncountable. Consider the following example where A= {a, b}.

ya,1/2 b,1/2

No matter how you look at it, you should end up with ¹yº(w) = 0 for every finite or
infinite word w. A possible way to fix this is to ask for a subprobability over words
instead of a probability. Then ¹yº can be defined as a subprobability with total mass
0. But a serious problem appears, because with this definition, the following state z has
the same (trivial) semantics as y , so that they are deemed equivalent.

za,3/4 b,1/4

But for example, y is twice as likely as z to generate an infinite word that begins with b.
This is a concrete behavioral difference. In case infinite traces are taken into account,
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both states are thus not to be considered equivalent. Further, we would like to have tech-
niques to prove that they are (not). To this purpose, it is necessary to dive into measure
theory and define the arguments of ¹xº to be sets of words instead of being simply words.

To this end we will use coalgebras. State-based sytems are increasingly modeled us-
ing a coalgebraic point of view, which benefits from the powerful toolbox of category
theory. An introduction to coalgebras can be found in [9] or [8]. This framework is
notably convenient when it comes to define trace semantics; this is performed for very
general PTS in [11], using a construction in a Kleisli category as in [7]. The usual coun-
terpart of this kind of construction is to carry out a determinization process formally
based on an Eilenberg-Moore category. Concretely, the state space is changed in order
to make transitions become deterministic. The comparison between these two methods
is discussed in [10]. Determinization allows to exploit bisimulation up-to techniques, a
family of proof methods for behavioural equivalence of state-based systems, which have
been extensively applied in concurrency theory and, more recently, in automata the-
ory. For example, non-deterministic automata can be determinized via the well-known
powerset construction. This opens the way for the HKC algorithm of [4] that checks the
equivalence of non-deterministic automata using up-to techniques.

Our main contribution is to redefine the Kleisli trace semantics of [11] using the Eilenberg-
Moore method. This is done for both discrete and continuous sytems. In the case of
discrete systems, our approach allows to generalize the HKC algorithm of [3] to an algo-
rithm HKC∞ that checks equivalence of states (i.e. it checks if ¹xº= ¹yº) for both finite
and infinite words. Our paper is organized as follows. In section 1 are introduced the
basic concepts of category theory, coalgebraic modeling and measure theory, including a
part about measurable sets of words. Section 2 deals with the discrete case. The deter-
minization process is performed by hand in order to go straight to the HKC∞ algorithm
and its correctness. This is followed by a few examples. The general setting is presented
in section 3, where the origin of the determinization process is further explained. Its
central result is Theorem 34. Section 3 ends with the proof that our semantics is the
same as the Kleisli semantics from [11]; the general framework that relates both con-
structions is mentioned. It might well be worth to begin by scanning section 2 to see
the underlying ideas of the construction without caring about the measurability of every
function, as well as some concrete brightening examples. Definitions and theorems that
are not explicitely stated or referenced are considered as folklore and can be found in
any basic related book.

Related work. Our main source for the overall spirit of the whole paper is undoubt-
edly [11], which is in turn influenced by the Kleisli constructions done in [7]. Both
versions of HKC presented in [4] and [3] are good starting points to understand bisimu-
lation up-to and the determinization method. The overhanging link between Kleisli and
determinization is discussed in [10].
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1 Preliminaries

The set of positive integers is N. The set of real numbers is R, the set of non-negative
real numbers is R+. The notation 1 stands for a set with only one element 1 = {∗}.
Given a set X , its power set is P (X ).

1.1 Measure theory

Let X be any set. A σ-algebra on X is a subset ΣX ⊆ P (X ) such that ; ∈ ΣX and
ΣX is closed under complementation and countable union. Note that this implies that
X ∈ ΣX and that ΣX is closed under countable intersection and under set difference.
Given any subset G ⊆ P (X ), there always exists a smallest σ-algebra containing G. We
call it the σ-algebra generated by G and denote it by σX (G). For example, P (X ) is a
σ-algebra on X . When working with real numbers R, we will use the Borel σ-algebra
B(R) = σR({(−∞, x] | x ∈ R}). More specifically we denote the line segment [0,1]
by I and use B(I) = {B ∩ I | B ∈ B(R)} as the canonical σ-algebra on I. If X is a set
and ΣX is a σ-algebra on X , the pair (X ,ΣX ) is called a measurable space. From now
we will write X for (X ,ΣX ) when the σ-algebra used is clear.

Product. Given measurable spaces (X ,ΣX ) and (Y,ΣY ), we define a product σ-algebra
on X × Y by ΣX ⊗ ΣY = σX×Y ({SX × SY | SX ∈ ΣX , SY ∈ ΣY }). The product of mea-
surable spaces is then defined by (X ,ΣX ) ⊗ (Y,ΣY ) = (X × Y,ΣX ⊗ ΣY ). Note that if
X ∈ GX ⊆ P (X ) and Y ∈ GY ⊆ P (Y ), then σX×Y ({SX × SY | SX ∈ GX , SY ∈ GY }) =
σX (GX )⊗σY (GY ).

Sum. Given measurable spaces (X ,ΣX ) and (Y,ΣY ), we define a sum σ-algebra on
the disjoint union X + Y = {(x , 0) | x ∈ X } ∪ {(y, 1) | y ∈ Y } by ΣX ⊕ΣY = {SX + SY |
SX ∈ ΣX , SY ∈ ΣY }. The sum of measurable spaces is then defined by (X ,ΣX )⊕(Y,ΣY ) =
(X+Y,ΣX⊕ΣY ). Note that if ; ∈ GX ⊆ P (X ) and Y ∈ GY ⊆ P (Y ), thenσX+Y (GX⊕GY ) =
σX (GX )⊕σY (GY ), see [11].

Binary products and sums can be easily generalized to finite products and sums by in-
duction. These are denoted by

⊗

i∈I and
⊕

i∈I respectively.

A function f : (X ,ΣX ) → (Y,ΣY ) is measurable if for all SY ∈ ΣY , f −1(SY ) ∈ ΣX . The
composition of measurable functions is measurable.

Lemma 1. If f : (X ,ΣX )→ (Y,σY (GY )) is such that for all SY ∈ GY , f −1(SY ) ∈ ΣX , then
it is measurable.

Proof. The proof is given as it shows the classical way of reasoning about generated
σ-algebras. Let Σ = {S ⊆ Y | f −1(S) ∈ ΣX } ⊆ P (Y ). Note that ; ∈ Σ because
f −1(;) = ; ∈ ΣX , and that Σ is closed under complementation and countable union.
Indeed, if (Sn)n∈N ∈ ΣN are such that f −1(Sn) ∈ ΣX for all n ∈ N, we have f −1(Y \
S0) = X \ f −1(S0) ∈ ΣX as ΣX is closed under complementation, and f −1

�⋃

n∈N Sn

�

=
⋃

n∈N f −1(Sn) ∈ ΣX as ΣX is closed under countable unions. Thus Σ is a σ-algebra. Fur-
thermore, the hypothesis gives that GY ⊆ Σ. As σY (GY ) is the smallest σ-algebra that
contains GY , we get σY (GY ) ⊆ Σ so that f is measurable.
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For any family of measurable spaces (Zi ,ΣZi
)i∈I , and any family of functions ( fi)i∈I :

Y → Zi , define ΣY as the smallest σ-algebra on Y that makes every fi measurable. This
is the σ-algebra generated by ( fi)i∈I .

Lemma 2. Given h : (X ,ΣX ) → (Y,ΣY ) where ΣY is generated by some ( fi)i∈I , assume
that for all i ∈ I , ( fi ◦ h) is measurable. Then h is measurable.

Proof. First prove that ΣY = σY ({ f −1
i (Si) | i ∈ I , Si ∈ ΣZi

}). The σ-algebra on the
right makes all functions fi measurable, thus it contains ΣY . On the other hand, for all
i ∈ I , Si ∈ ΣZi

, we have f −1
i (Si) ∈ ΣY because fi is measurable. Now apply Lemma 1

using that for all i ∈ I and Si ∈ ΣZi
, h−1( f −1

i (Si)) = ( fi ◦ h)−1(Si) ∈ ΣX because fi ◦ h is
measurable.

For instance, using Lemma 2 facilitates measurability proofs for functions with several
components. Let (Zi ,Σi)i∈I be a finite sequence of measurable spaces, (X ,ΣX ) be a
measurable space, and f : (X ,ΣX )→

�∏

i∈I Zi ,
⊗

i∈I Σi

�

be a function with components
( fi : X → Zi)i∈I . Note that

⊗

i∈I Σi is the smallestσ-algebra on
∏

i∈I Zi that makes every
projection π j :

∏

i∈I Zi → Z j measurable. (Indeed, π−1
j (S j) =

∏

i∈I X εi where X εj = S j

and X εi = X i for i 6= j, so that
⊗

i∈I Σi makes every π j measurable; on the other hand,
a generator of

∏

i∈I Zi can be written
∏

i∈I Si =
⋂

i∈I π
−1(Si) which is in any σ-algebra

that makes every π j measurable.) Thus applying Lemma 2 it is sufficient that every f j
is measurable in order for f to be measurable.

A finite measure on the measurable space (X ,ΣX ) is a function m : ΣX → R+ such
that m(;) = 0 and if (Sn)n∈N ∈ ΣNX are disjoint, then m

�⋃

n∈N Sn

�

=
∑

n∈Nm(Sn) (this
is called σ-additivity). In this case the triple (X ,ΣX , m) is called a measure space. If
m(X ) = 1 (resp. m(X )≤ 1) it is a probability space and m is a probability measure (resp.
sub-probability). Finite measures have pleasant properties: m(X \A) = m(X )−m(A) for
any A ∈ ΣX , m

�⋃

n∈N An

�

= limn→∞m(An) for any increasing sequence (An)n∈N of ΣX ,
and analogously m

�⋂

n∈N Bn

�

= limn→∞m(Bn) for any decreasing sequence (Bn)n∈N of
ΣX . These measures are called finite because they satisfy m(X )<∞.

Measure over words

We begin with some reminders about languages. Any finite set A can be called an al-
phabet and its elements letters. The set of words of length n with letters in A is denoted
by An. By convention A0 = {ε} where ε is the empty word. The set of finite words over
A is denoted by A∗ =

⋃

n∈N An, the set of infinite words by Aω = AN and the set of (finite
and infinite) words by A∞ = A∗ ∪Aω. A language L is a subset of P (A∗). It can be seen
as a function L : A∗→ {0, 1}, by setting L(w) = 1 iff w ∈ L. The language derivative of L
with respect to a letter a is defined by La(w) = L(aw).

The length of w ∈ A∞ is denoted by |w| ∈ N ∪ {∞}. The concatenation function
A∗ × A∞ → A∞ is denoted by juxtaposition and defined by uv(n) = u(n) if n < |u|
and uv(n) = v(n− |u|) if |u| ≤ n < |u|+ |v|. It can be extended to languages P (A∗)×
P (A∞)→P (A∞) by setting LM = {uv | u ∈ L, v ∈ M}. In the following, {w}M will be
denoted by wM for convenience.

One aim of this paper is to define certain probability measures on A∞ which reflects
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the behaviour of a given automaton. For this purpose we need to make precise which
σ-algebra we use.

Definition 3. Let S∞ = {;} ∪ {{w} | w ∈ A∗} ∪ {wA∞ | w ∈ A∗}. Define the σ-algebra of
measurable sets of words to be ΣA∞ = σA∞(S∞).

This σ-algebra is generated by a countable family of simple generators: the empty set,
the singletons of finite words, and the cones, i.e., sets wA∞ of words that have the finite
word w as a prefix. In the sequel, this is the σ-algebra on A∞ implicitly used. As a first
step, we take a look at some properties of measurable sets of words.

Proposition 4. The following sets of words are measurable:

(i) The singleton {w} for any w ∈ A∞;

(ii) Any countable language;

(iii) Any language of finite words;

(iv) ;, A∗, Aω, A∞;

(v) The concatenation LS where L ⊆ A∗ and S ∈ ΣA∞ .

Proof. (i) It is already known for finite words w since {w} ∈ S∞ ⊆ ΣA∞ . Let w ∈ Aω.
Let w|n be the finite word of length n defined by w|n(k) = w(k) for any k ≤ n. Then
{w}=

⋂

n∈N w|nA∞ ∈ ΣA∞ because ΣA∞ is closed under countable intersections.

(ii) Any countable language is a countable union of singletons, which are all measur-
able sets.

(iii) A language of finite words is a subset of the countable set A∗, so it is countable,
hence measurable.

(iv) The empty set and A∞ are in ΣA∞ because this is a σ-algebra on A∞. The set A∗

is a language of finite words. Finally, Aω = A∞ \ A∗ ∈ ΣA∞ because ΣA∞ is closed
under complementation.

(v) As LS =
⋃

w∈L wS is a countable union, it is sufficient to prove that for all S ∈ ΣA∞ ,
wS is measurable for any w ∈ A∗. LetΣ= {S ⊆ A∞ | ∀w ∈ A∗, wS ∈ ΣA∞}. It is easy
to see that S∞ ⊆ Σ, because for any w ∈ A∗, w; = ; ∈ ΣA∞ , w{u} = {wu} ∈ ΣA∞

and w(uA∞) = (wu)A∞ ∈ ΣA∞ . In particular ; ∈ Σ. Moreover, if (Sn)n∈N are all in
Σ, then for any w ∈ A∗ we have w

⋃

n∈N Sn =
⋃

n∈N wSn ∈ ΣA∞ since ΣA∞ is closed
under countable union, and w(A∞ \ S0) = wA∞ \ wS0 ∈ ΣA∞ since ΣA∞ is closed
under set difference. Thus

⋃

n∈N Sn ∈ Σ and A∞\S0 ∈ Σ so Σ is aσ-algebra. Since
it contains S∞, we get that ΣA∞ ⊆ Σ and this is exactly what had to be proved.

In the following, if m is a measure over A∞ and w ∈ A∞, we will write m(w) instead
of m({w}). Since S∞ has a pleasant structure (it is a covering semiring of sets), we have
the following key theorem:

Theorem 5 (from [11]). Let m : S∞ → R+ be a map satisfying m(;) = 0. The two
following conditions are equivalent.

(i) There exists a unique measure m̃ : ΣA∞ → R+ such that m̃|S∞ = m.

(ii) For all w ∈ A∗, m(wA∞) = m(w) +
∑

a∈A m(waA∞).
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Proof. (i) ⇒ (ii) This is obvious because the equation comes directly from the σ-
additivity of m̃. (ii) ⇒ (i) According to Lemma 3.18 of [11], (ii) is equivalent to the
fact that m is a pre-measure. Using the extension theorem (Proposition 2.4 in [11]),
this pre-measure can be uniquely extended to a measure as in (i).

The notion of language derivative was defined above by La(w) = L(aw). One can intro-
duce the same operation for measures over words.

Definition 6 (Measure derivative). Let m be a measure on A∞ and a ∈ A. The map ma
defined by ma(S) = m(aS) for any S ∈ ΣA∞ is a measure, called the measure derivative of
m (with respect to a).

This is well-defined because sets of the shape aS for S ∈ ΣA∞ are measurable ac-
cording to Proposition 4 (v), and ma(;) = m(a;) = m(;) = 0 and ma

�⋃

n∈N An

�

=
m
�⋃

n∈N aAn

�

=
∑

n∈Nm(aAn) =
∑

n∈Nma(An) if the An are disjoint.

In the following, the space of sub-probability measures on (A∞,ΣA∞) is denoted by
M (A∞). Note that M (A∞) is closed under measure derivatives: if m(A∞) ≤ 1 then
ma(A∞) = m(aA∞)≤ m(A∞)≤ 1.

1.2 Category theory

We recall here some basics of category theory. A category consists of a class of objects C
and a class of morphisms (or arrows) C(X , Y ) for every objects X , Y of C. The notation
f : X → Y stands for the sentence " f is an arrow of C(X , Y )". For each object X of C there
is an identity morphism idX : X → X . Furthermore, there is a composition function ◦
which is associative i.e. (h ◦ g) ◦ f = h ◦ (g ◦ f ), and such that if f : X → Y , then
f ◦ idX = f = idY ◦ f . The composition g ◦ f is possible iff there exists objects X , Y, Z
such that f : X → Y and g : Y → Z . In the following, we will mainly work with the two
following categories:

. The category Sets of sets and functions. Objects are usual sets, morphisms are
functions, identity morphisms are identity functions and composition is given by
the usual composition of functions.

. The category Meas of measurable sets and functions. Objects are measurable
spaces (X ,ΣX ). Morphisms are measurable functions f : (X ,ΣX )→ (Y,ΣY ). Iden-
tity morphisms are identity functions and composition is given by the usual com-
position of functions.

Let C be a category and A be an object of C. The object A is final if for all object X of C
there exists a unique morphism fX : X → A called the final morphism. Such an object is
unique up to (unique) isomorphism.

A functor from C to D is a mapping F that associates to every object X of C an ob-
ject FX of D, to every morphism f : X → Y a morphism F f : FX → FY , and such that
F(idX ) = idFX and F g ◦ F f = F(g ◦ f ). An endofunctor of C is a functor F : C → C.
The composition of two functors is still a functor. For example, the identity functor
IdC : C→ C maps each object and morphism to itself. Given an object X of D, the con-
stant functor X : C→ D maps each object to X and each morphism to idX .

Let F, G : C → D be some functors. A natural transformation λ : F ⇒ G consists of a

6



D-morphism λX : FX → GX for every X ∈ C, such that for every C-morphism f : X → Y ,
the following diagram commutes.

FX GX

FY GY

λX

G fF f

λY

Given a category C, a monad is a triple (T,η,µ) where T : C→ C is an endofunctor and
η : IdC ⇒ T , µ : T T ⇒ T are natural transformations called unit and multiplication
respectively, such that the following two diagrams commute.

T X T T X T T T X T T X

T T X T X T T X T X

ηT X

µXTηX

µX

µT X

µX

TµX µX

Examples. In the context of coalgebras, monads are often used to model branching
behaviour, like non deterministic branching or probabilistic branching. It will always
be clear from the name of the functor which monad is used. Hence, units are always
denoted by η and multiplications by µ.

. In Sets, the power set monad (P ,η,µ) is defined as follows. Given two sets X , Y
and a function f : X → Y , P X is the power set P (X ) and P f : S ∈ P X 7→
f (S) ∈ P Y is the direct image. The unit is the singleton ηX (x) = {x} and the
multiplication is given by µX (S ) =

⋃

S∈S S.

. In Sets, the probability monad (P,η,µ) is defined as follows. For any u : X → I
the support of u is defined by supp(u) = {x ∈ X | u(x) 6= 0}. If supp(u) is fi-
nite we say that u has finite support. Given two sets X , Y and a function f :
X → Y , define PX =

�

u : X → I | u has finite support and
∑

x∈X u(x) = 1
	

and
P f (u)(y) =

∑

x∈ f −1({y}) u(x). The unit is the Kronecker delta ηX (x)(y) = δx ,y

and the multiplication is given by µX (U)(y) =
∑

u∈PX U(u)u(y). This monad
models finitely branching probabilistic behaviour. A variant is the subprobabil-
ity monad (D,η,µ). The only difference is that the sum may be less than 1:
DX =

�

u : X → I | u has finite support and
∑

x∈X u(x)≤ 1
	

.

Algebras and distributive laws

Let F : C → C be an endofunctor. An F-algebra is an object X together with an arrow
α : FX → X . An F -algebra can be viewed as an operation that takes some information
out of FX and constructs a new element in X . For example, in Sets, if some set S is
given and FX = S × X , F f = Id × f , then the arrow α : S × Sω→ Sω given by concate-
nation α(h, t) = h · t can be thought of as a way of making a list from a head element
h and a tail list t. A morphism of F -algebras α : FX → X and β : FY → Y is an arrow
f : X → Y such that f ◦ α = β ◦ F f . The collection of F -algebras and their morphisms
form a category denoted by Alg(F).
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The last section of this paper is committed to make clear why the construction of trace
semantics is canonical. Showing that it comes from a distributive law is a convenient
way to find this out. A distributive law of a monad over a functor formally allows to
reverse the order in which they are applied. It is based on a variant of algebras named
Eilenberg-Moore algebras.

Let (T,η,µ) be a monad on a category C. An Eilenberg-Moore T-algebra is a T -algebra
α such that the following diagrams commute.

X T X T T X T X

X T X X

ηX

idX

α

µX

Tα α

α

Given two Eilenberg-Moore T -algebras α : T X → X and β : T Y → Y , a morphism from
α to β is a C-arrow f : X → Y such that f ◦ α = β ◦ T f . Eilenberg-Moore T -algebras
and their morphisms form a category denoted by EM(T ).

Let F : C→ C be an endofunctor. A natural transformation λ : T F ⇒ F T is a distributive
law if the following diagrams commute for every object X of C.

FX FX T T FX T F T X F T T X

T FX F T X T FX F T X

idX

ηFX FηX

λX

TλX λT X

µFX FµX

λX

Coalgebras

The dual concept of F -algebra is that of an F-coalgebra, i.e., an object X together with
an arrow α : X → FX . An F -coalgebra can be seen as a way of observing some behavior.
For example, if FX = S×X as above, α : Sω→ S×Sω given by α(h· t) = (h, t) is a system
which decomposes an infinite list into its head and its tail. The intuition behind coal-
gebras is that they model systems. The functor F captures the structure of the system.
The object X captures the state space and the arrow α captures both the transition be-
haviour and the observations. It will be clearer in the end of this section, where classical
deterministic or non-deterministic automata will be regarded as coalgebras. For more
details about the basics intuition of coalgebras, see [9]. A morphism of F -coalgebras
α : X → FX and β : Y → FY is an arrow f : X → Y such that F f ◦ α = β ◦ f . For
a given functor F , the collection of F -coalgebras and their morphisms form a category
denoted by Coalg(F). This category may have a final object, called the final coalgebra,
which is very interesting because it yields a canonical notion of semantics. For example,
taking F as above, the final F -algebra is α : Sω → S × Sω. This means that for any
F -coalgebra β : X → S× X , there exists a unique coalgebra morphism ¹−º from β to α,
i.e. ¹−º : X → Sω is such that the following diagram commutes.

8



X Aω

A× X A× Aω

¹−º

β α

idA× ¹−º

Expressing β = 〈o, t〉 with o : X → A and t : X → X , we have that o(x) = ¹xº(0) and
¹t(x)º(n) = ¹xº(n + 1) so that a direct formula is ¹xº(n) = o(tn(x)). This fits with
the idea of an observable behaviour : what ¹−º tells is exactly the information we get
if we look at the repeated output of β over a state. Actually, the object Sω is the set of
streams over S, i.e., of S-valued sequences. The coalgebra β generates over time the
data contained in a stream, step by step.

Bisimulation (up-to)

In the framework of coalgebras, the notion of bisimulation is a tool which provides a
family of proof techniques (see [12]). There is a general definition of bisimulations in
any category using diagrams. Since this paper is only using bisimulations for discrete
systems, the definition given here is specific to the category Sets. It is equivalent to the
general definition [8].

Definition 7 (Bisimulation). Let F : Sets→ Sets be an endofunctor, let X be a set and let
R ⊆ X × X be a relation. The relation lifting of R by F is defined by

Rel(F)(R) = {(b, c) ∈ FX × FX | ∃d ∈ FR, b = Fπ1(d) and c = Fπ2(d)}

Given a coalgebra α : X → FX , let bα : P (X × X ) → P (X × X ) be defined by bα(R) =
(α×α)−1(Rel(F)(R)). The relation R is called a bisimulation on α if R ⊆ bα(R).

The greatest bisimulation on a given coalgebra (X ,α) is called bisimilarity and de-
noted by ∼. The following statement expresses the principal interest of using bisimula-
tions: bisimilarity implies behavioural equivalence.

Lemma 8. Let (X ,α) be an F-coalgebra on Sets. Assuming there exists a final F-coalgebra
(Z ,ζ), we have

∀x , y ∈ X , x ∼ y ⇒ ¹xº= ¹yº

Proof. Let R ⊆ X × X be a bisimulation such that (x , y) ∈ R. For every (x ′, y ′) ∈ X × X ,
let d ∈ FR such that α(x ′) = Fπ1(d) and α(y ′) = Fπ2(d) and set γ(x ′, y ′) = d. The
pair (R,γ) is an F -coalgebra. Note that π1 is a coalgebra morphism from (R,γ) to (X ,α)
because (Fπ1 ◦ γ)(x ′, y ′) = Fπ1(d) = α(x ′) = (α ◦π1)(x ′, y ′). The same is true for π2.
Thus ¹−º◦π1 and ¹−º◦π2 are coalgebra morphisms from (R,γ) into the final coalgebra
(Z ,ζ), hence they are equal. Since (x , y) ∈ R this yields ¹xº= ¹yº.

It will be seen later that bisimulations incorporate a huge amount of elements. This is
the reason why a slightly more refined notion is needed, namely bisimulation up-to.

Definition 9. Let (X ,α) be an F-coalgebra on Sets and g : P (X × X )→P (X × X ) be a
function. A relation R ⊆ X × X is a bisimulation up-to g if R ⊆ bα(g(R)).

For concrete examples of bisimulation (up-to), see the following part about deterministic
and non-deterministic automata.
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1.3 Automata

We present here the coalgebraic view of automata in the category Sets, for a given alpha-
bet A. We begin with Moore automata, which are a slight generalization of deterministic
automata. Then we take a look at non-deterministic automata. The notion of bisimula-
tion (up-to) is instantiated to deterministic and non-deterministic automata in order to
present algorithms HK and HKC which are useful in section 2, and a few examples are
given.

Moore and deterministic automata

Let B be a set. Define the machine functor FB by FBX = B × X A and F f = idB × f A. An
FB-coalgebra models a Moore automaton with output in B. Let β be an FB-coalgebra.
We often denote such a coalgebra by β = 〈o, a 7→ ta〉. Each state is mapped to a value
via the output function o : X → B and, for every letter a ∈ A, to a (unique) other state
via ta : X → X . Note that automata, modeled coalgebraically in this way, do not have
a notion of initial state. For such automata, it is useful to have a generalized notion of
language. From now, a language will be a function L : A∗→ B. The language derivative
is still defined by La(w) = L(aw).

Remark. The notation 2 stands for the set {0, 1}. An F2-coalgebra models a deter-
ministic automaton. For x ∈ X , the output is 1 when the state is terminating and the
output is 0 when it is not. The category Coalg(F2) will be denoted by DA.

The following proposition underlines the main interest of using the machine functor:
it has a final coalgebra, consisting of languages.

Proposition 10. There exists a final FB-coalgebra (Ω,ω) where Ω = BA∗ and ω : BA∗ →
FBBA∗ is defined by ω(L) = 〈L(ε), a→ La〉.

Proof. Let β = 〈o, a 7→ ta〉 : X → FX . We must prove that there exist a unique function
ϕ : X → BA∗ such that the following diagram commutes.

X Ω

FX FΩ

ϕ

β ω

Fϕ

This means Fϕ ◦ β =ω ◦ϕ i.e. 〈o(x), a 7→ (ϕ ◦ ta)(x)〉 = 〈ϕ(x)(ε), a 7→ ϕ(x)a〉. Thus,
we define inductively the function ϕ by

ϕ(x)(ε) = o(x) ϕ(x)(aw) = ϕ(ta(x))(w)

By construction it makes the diagram commute. Furthermore, these two last equations
are needed for commutation, hence such a morphism is unique.

The language accepted by a state x ∈ X can thus be defined using the final morphism
by ¹xº(ε) = o(x) and ¹xº(aw) = ¹ta(x)º(w).
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Bisimulations (up-to) with the functor FB

It is important to notice that the notion of bisimulation for FB-coalgebras is very well-
behaved. First, an easy computation shows that for any R ⊆ X × X , there is the simple
expression bβ (R) = {(x , y) ∈ X × X | o(x) = o(y)∧∀a ∈ A, (ta(x), ta(y)) ∈ R}. Hence,
a relation R is a bisimulation iff for all (x , y) ∈ R, o(x) = o(y) and for all a ∈ A,
(ta(x), ta(y)) ∈ R. Moreover, bisimilarity and trace equivalence coincide, as shown by
the following lemma combined with Lemma 8.

Lemma 11. Let β : X → FBX be an FB-coalgebra. Then

∀x , y ∈ X ,¹xº= ¹yº⇒ x ∼ y

Proof. Define by induction tε = idX and twa = ta ◦ tw. Set R= {(tw(x), tw(y)) | w ∈ A∗}
and show that R is a bisimulation containing (x , y). This last point is obvious because
(x , y) = (tε(x), tε(y)). Let (x ′, y ′) ∈ R and w ∈ A∗ such that x ′ = tw(x) and y ′ = tw(y).
Then o(x ′) = ¹tw(x)º(ε) = ¹xº(w) = ¹yº(w) = ¹tw(y)º(ε) = o(y ′). Let a ∈ A,
then (ta(x ′), ta(y ′)) = (twa(x), twa(y)) ∈ R, so that R is a bisimulation. Consequently,
x ∼ y .

Let x , y ∈ X . The following algorithm Naive(x , y) tries to compute the smallest bisim-
ulation that contains (x , y), this is, R = {(tw(x), tw(y)) | w ∈ A∗} as in Lemma 11. If
R is not a bisimulation, the algorithm will stop at some point. If R exists and is infinite
(which requires X to be infinite), then Naive(x , y) never stops.

Naive(x , y)

(1) R := ;; todo := ;
(2) insert (x , y) into todo
(3) while todo is not empty do

(3.1) extract (x ′, y ′) from todo
(3.2) if (x ′, y ′) ∈ R then continue
(3.3) if o(x ′) 6= o(y ′) then return false
(3.4) for all a ∈ A, insert (ta(x ′), ta(y ′)) into todo
(3.5) insert (x ′, y ′) into R

(4) return true

Bisimulation is fine but, as we will see, bisimulation up-to g is better - provided g is
compatible with bβ . Let g :P (X ×X )→P (X ×X ). We say that g is compatible with bβ
if it is monotone and for all R, R′ ⊆ Y × Y , R ⊆ bβ (R′)⇒ g(R) ⊆ bβ (g(R′)). Functions
that are compatible with bβ have the pleasant following property.

Proposition 12 ([4]). For all g : X × X → X × X compatible with bβ , any bisimulation
up-to g is contained into a bisimulation.

Proof. Let R ⊆ X × X such that R ⊆ bβ (g(R)). By compatibility and a simple induc-
tion, gn(R) ⊆ bβ (gn+1(R)) so that

⋃

n∈N gn(R) ⊆ bβ (
⋃

n∈N gn(R)) is a bisimulation that
contains R.

Hence, if g is compatible with bβ and x , y are related by a bisimulation up-to g, then
x ∼ y .

Lemma 13. The following functions are compatible with bβ :
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• r : R 7→ {(x , x) | x ∈ X }
• s : R 7→ {(y, x) | (x , y) ∈ R}
• t : R 7→ {(x , z) | ∃y ∈ X , (x , y) ∈ R and (y, z) ∈ R}
• id : R 7→ R

• f ◦ g for all f , g compatible with bβ
•
⋃

i∈I fi for all ( fi)i∈I compatible with bβ
• f ω =

⋃

n∈N f n for all f compatible with bβ

The last two points of the latter lemma hold in general for any compatible function. This
is actually the reason why compatible functions were first introduced.

Up-to equivalence and HK

The Naive algorithm can be improved using up-to techniques. The principle of the
Hopcroft-Karp algorithm (HK) is to reason up-to equivalence. This can significantly
speed up the Naive algorithm in many cases. For a relation R ⊆ X × X , the equiva-
lence closure e(R) is the least equivalence relation that contains R, i.e., that satisfies

(x , y) ∈ R
(x , y) ∈ e(R) (x , x) ∈ e(R)

(x , y) ∈ e(R)
(y, x) ∈ e(R)

(x , y) ∈ e(R) (y, z) ∈ e(R)
(x , z) ∈ e(R)

The function e is compatible with bβ because e = (id ∪ r ∪ s ∪ t)ω. Now replace line
(3.2) in Naive(x , y) by

(3.2) if (x ′, y ′) ∈ e(R) then continue

This new algorithm, HK(x , y), will stop faster than Naive(x , y) because it returns true
as soon as it has built a bisimulation up-to e. Here is an example in the case of deter-
ministic automata (B = 2, the ouput is 1 iff the state is double-circled).

x1

y1

x2

y2

a

a

b
b

In this case, applying Naive(x1, y1) constructs the smallest bisimulation in 4 steps : R=
{(x1, y1), (x2, y2), (y1, x1), (y2, x2)} and then returns true, whereas HK(x1, y1) returns
true as soon as R′ = {(x1, y1), (x2, y2)} because R′ is a bisimulation up-to e.

Non-deterministic automata

A non-deterministic automaton is a coalgebra for the composite functor F2P . Let α be
a non-deterministic automaton, then we can write it as α = 〈o, ta〉 : X → 2 ×P (X )A.
The output o still models termination. The difference with deterministic automata is
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the type of ta : X →P (X ). The category Coalg(F2P ) will be denoted by NDA. It does
not have a final object, but given α : X → 2×P (X )A, the language of a state x ∈ X is
denoted by ¹xºNDA and can intuitively be defined by

¹xºNDA(ε) = o(x) ¹xºNDA(aw) = max
y∈ta(x)

¹yºNDA(w)

Bisimilarity and trace equivalence with respect to this semantics do not coincide. One
can prove that R ⊆ X × X is a bisimulation iff for all (x , y) ∈ R,

o(x) = o(y)
∀x ′ ∈ ta(x),∃y ′ ∈ X , (x ′, y ′) ∈ R

∀y ′ ∈ ta(x),∃x ′ ∈ X , (x ′, y ′) ∈ R

Consider the following example :

x

y

z

y ′

z′

a

b

a

c

u

v

w w′

a

b c

Here ¹xºNDA = {ab, ac} = ¹uºNDA but x and u are not bisimilar. Indeed, if x ∼ u then
y ∼ v but this is impossible because y has no arrow labeled with c, whereas v has one.

We recall the well-known power set construction : let 〈o, a 7→ ta〉 : X → 2 × P (X )A.
We define 〈o#, a 7→ t#

a 〉 : P (X ) → 2 × P (X )A by o#(U) = maxx∈U o(x) and t#
a (U) =⋃

x∈U ta(x). Note that this is a deterministic automaton. Let ¹−ºDA be the final mor-
phism from 〈o#, a 7→ t#

a 〉 to the final object in DA. The determinized automaton rec-
ognizes the same language as the first one, in the sense that for all x ∈ X , ¹xºNDA =
¹{x}ºDA.

Up-to congruence and HKC

Let α be a non-deterministic automaton. In order to check if ¹xºNDA = ¹yºNDA, it is
possible to first compute the determinized automata α# and then check if ¹{x}ºDA =
¹{y}ºDA. According to Lemmas 8 and 11, it is equivalent to check if {x} ∼ {y} in the
determinized automata. To this purpose, one can use bisimulation or possibly bisimula-
tion up-to equivalence, but an even better option is to exploit the determinized structure
of α# with bisimulation up-to congruence. This is what the authors of [4] do, as an im-
provement of Hopcroft and Karp’s algorithm for determinized automata. In section 2,
we will draw inspiration from HKC to propose an algorithm for the trace semantics of
PTS.
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Let R ⊆ P (X ) × P (X ). Its congruence closure c(R) is the least congruence relation
that contains R, i.e., that satisfies

(U , V ) ∈ R
(U , V ) ∈ c(R) (U , U) ∈ c(R)

(U , V ) ∈ c(R)
(V, U) ∈ c(R)

(V, W ) ∈ c(R) (U , W ) ∈ c(R)
(U , V ) ∈ c(R)

(U , V ) ∈ c(R) (U ′, V ′) ∈ c(R)
(U ∪ U ′, V ∪ V ′) ∈ c(R)

The function c is shown to be compatible with bα# in [4]. Thus, if {x} and {y} are related
by a bisimulation up-to congruence, they are bisimilar and this yields ¹xºNDA = ¹yºNDA.
Hence the following algorithm computes the trace equivalence of x and y .

HKC(x , y)

(1) R := ;; todo := ;
(2) insert ({x}, {y}) into todo
(3) while todo is not empty do

(3.1) extract (U , V ) from todo
(3.2) if (U , V ) ∈ c(R) then continue
(3.3) if o#(U) 6= o#(V ) then return false
(3.4) for all a ∈ A, insert (t#

a (U), t#
a (V )) into todo

(3.5) insert (U , V ) into R
(4) return true

The following example taken from [2] shows how HKC quickens the computations. The
alphabet is A= {a}. The initial non-deterministic automaton is:

x y z

u

a

a

a

a

a

The (interesting part of the) determinized automaton is:

{x} {y, z} {x , y} {x , y, z}

{u}

a a a

a

The bisimulation computed by Naive({x}, {u}) or HK({x}, {u}) is represented by dotted
+ dashed lines. The bisimulation up-to congruence computed by HKC(x , y) consists only
in the dashed lines: after two steps, the algorithm HKC returns true.
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2 Discrete case

Define the endofunctor L : Sets→ Sets by setting LX = A×X +1 and L f = idA× f + id1.
Remember that (P,η,µ) is the probability distribution monad. We can now formally
define PTS from the introduction as P L-coalgebras. For a PTS α : X → P LX , the (finite
and infinite) trace semantics ¹¹¹ − ººº : X → M (A∞) can be defined by the following
equations.

¹¹¹xººº(εA∞) = 1 ¹¹¹xººº(ε) = α(∗)

¹¹¹xººº(awA∞) =
∑

y∈X

α(x)(a, y) ·¹¹¹yººº(wA∞) ¹¹¹xººº(aw) =
∑

y∈X

α(x)(a, y) ·¹¹¹yººº(w)

The aim of this section is to find back this semantics via a determinization construction
and to provide an efficient algorithm that takes x , y ∈ X and checks if ¹¹¹xººº = ¹¹¹yººº.
This last part is challenging at first sight, because this means the algorithm checks the
equality of two elements ofM (A∞), which are functions on the uncountable spaceΣA∞ .

To begin with, let us get used to this semantics and to measures over words by do-
ing some computations for two different PTS. The first one is defined on the alphabet
A= {a}.

x y ∗
a,1/3

a,1/3

1/3

a,1

The language ¹¹¹xººº is very easy to compute for sets of words in S∞ by induction: for every
finite word w, ¹¹¹xººº(w) = 0 and ¹¹¹xººº(wA∞) = 1. Hence, we have for example ¹¹¹xººº(aω) =
limn→∞¹¹¹xººº(anA∞) = 1 because the sequence of sets (anA∞)n∈N is decreasing. Let us
look at ¹¹¹yººº. First see that ¹¹¹yººº(ε) = 1/3 and ¹¹¹yººº(εA∞) = 1. Let n ∈ N∪ {0}, then:

¹¹¹yººº(an+1) =
1
3
¹¹¹yººº(an) +

1
3
¹¹¹xººº(an) =

1
3
¹¹¹yººº(an)

¹¹¹yººº(an+1A∞) =
1
3
¹¹¹yººº(anA∞) +

1
3
¹¹¹xººº(anA∞) =

1
3
¹¹¹yººº(anA∞) +

1
3

Hence ¹¹¹yººº(an) = 1/3n+1 and ¹¹¹yººº(anA∞) = (1+ 3−n)/2. Using the same arguments as
for ¹¹¹xººº, we have ¹¹¹yººº(aω) = limn→∞(1 + 3−n)/2 = 1/2. This is rather intuitive: the
probability of performing n loops in state y and then getting lost forever in state x is
1/3n+1. Summing them for n ∈ N∪ {0} gives 1/2.

The second PTS is defined on the alphabet A= {0,1,2}.

x y ∗

0,1/3

2,1/3

1,1/3 1
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This automaton generates Cantor’s space, in the sense that when generating an infinite
word, the computation stops if and only if this word is not in Cantor’s space (we recall
this is the set of real numbers r ∈ [0, 1] such that there is no 1 in the base 3 expansion

of r). More precisely, we have ¹¹¹xººº(w1) =
�

1
3

�|w|+1
if there is no 1 in w and ¹¹¹xººº(w) = 0

for other finite words. Furthermore ¹¹¹xººº(wA∞) =
�

1
3

�|w|
if there is no 1 in w. We can

guess this way that the measure of Cantor’s space in [0, 1] is 0 :

¹¹¹xººº(Aω) = ¹¹¹xººº(A∞ \ A∗) = ¹¹¹xººº(A∞)−¹¹¹xººº(A∗) = 1−¹¹¹xººº

�

⋃

w∈A∗
{w}

�

= 1−
∑

w∈A∗
¹¹¹xººº(w)

= 1−
∑

w∈{0,2}∗
¹¹¹xººº(w1) = 1−

∑

n∈N

∑

w∈{0,2}∗,|w|=n

�

1
3

�n+1

= 1−
1
3

∑

n∈N
2n
�

1
3

�n

= 0

2.1 Trace semantics via determinization

Starting from α : X → P LX , we will proceed in three steps in order to define its trace
semantics morphism ¹¹¹−ººº : X →M (A∞).

(i) Translate α into a coalgebra for the more convenient composite functor FI×ID, ob-
taining an α̃ : X → FI×IDX . Recall that (D,η,µ) is the sub-probability distribution
monad. In the sequel FI×I will be denoted by F .

(ii) Determinize it, i.e., define an α̃# : DX → F DX such that α̃# ◦ηX = α̃. Thus there
is a final morphism ϕα̃# : DX → Ω.

(iii) Factorize the final morphism to get a coalgebra morphism DX → M (A∞), then
precompose with ηX to get the desired trace semantics X →M (A∞).

The whole construction is summed up in the following diagram. Here Ω = (I× I)A
∗

is
the set of languages with two outputs in I in accordance with Proposition 10.

X DX M (A∞) Ω

P LX

DLX F DX FM (A∞) FΩ

α

ιLX

ηX
¹−º ϕΠ

α̃# Π ω

eX

F¹−º FϕΠ

ϕα̃#

Fϕα̃#

α̃

¹¹¹−ººº

(i) Translation: from α to α̃

Let α : X → P LX be a P L-coalgebra. The space P LX does not enlighten the informa-
tion provided by α. It would be more convenient to have an explicit machine behaviour,
i.e., make functor F appear. The aim of the step (i) is to formally change P LX into F DX .

Each state x gives rise to a probability distribution α(x) over LX = A× X +1. There are
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three important pieces of information in it. First, the information that the total mass
is 1. Second, the probability of termination, which is α(x)(∗). Third, all the proba-
bilities α(x)(a, y) that the system transitions to some y ∈ X using some a ∈ A. Any
faithful translation of α should keep in memory this information. We define the natural
transformations ι : P ⇒ T and e : DL⇒ F D.

ιY : u ∈ PY 7→ u ∈ DY

eX : u ∈ DLX 7→

®

∑

z∈LX

u(z), u(∗), a 7→ [y 7→ u(a, y)]

¸

∈ F DX

The first one is from the inclusion PY ⊆ DY . The second one aims to clearly separate
the useful information; it appears in [10] where it plays the role of the extension natural
transformation. Now, take α̃= 〈α̃⊕, α̃∗, a 7→ ta〉= eX ◦ ιLX ◦α.

X P LX DLX F DXα ιLX eX

α̃

An explicit expression is α̃(x) =

*

∑

z∈LX

α(x)(z)

︸ ︷︷ ︸

=1

,α(x)(∗), a 7→ [y 7→ α(x)(a, y)]

+

.

(ii) Determinization

The F D-coalgebra α̃ has now to be changed into an F -coalgebra in order to benefit from
the final F -coalgebra semantics. This is the aim of step (ii).

Let β = 〈β⊕,β∗, a → ta〉 : X → F DX be any F D-coalgebra. Then, there is an obvi-
ous way to determinize it into an F -coalgebra β# = 〈β#

⊕ ,β#
∗ , a→ τa〉 : DX → F DX . Set

for all u ∈ DX :

β#
⊕ (u) =

∑

x∈X

u(x)β⊕(x)

β#
∗ (u) =

∑

x∈X

u(x)β∗(x)

∀a ∈ A τa(u) = y 7→
∑

x∈X

u(x)ta(x)(y)

This transformation is the same as in section 7.2 of [10] if the first output is dropped.
The state space of the automata is basically changed from X to DX . In a sense, the
function ta : X → DX is thus "homogenized" into τa : DX → DX . As an F -coalgebra,
β# can be structurally seen as a Moore automaton. It takes u ∈ DX , outputs its total
mass, outputs its termination mass, and every letter a makes it transition to a new sub-
probability distribution v = τa(u).

In this paragraph we explain the terminology "determinization". This refers to the clas-
sical power set construction, which consists in changing the state space X of a non-
deterministic automaton β into P (X ) to produce a deterministic automaton β#. This is
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actually an instance of a construction discussed in section 3 (see Lemma 27): the gen-
eral determinization approach involves an Eilenberg-Moore category that we overlook
for the moment. The key property is that the behaviour of β starting with x as initial
state is the same as the behaviour of β# starting with {x} as initial state. Here we are
actually doing the same thing, replacing the functor P with the functor D, and unit
x 7→ {x} with unit x 7→ δx ,−. In terms of diagrams, what has to be checked to confer
the title of determinization is that β# ◦ηX = β . This is the case:

(β#
⊕ ◦ηX )(x) =

∑

x ′∈X

δx ,x ′β⊕(x
′) = β⊕(x)

(β#
∗ ◦ηX )(x) =

∑

x ′∈X

δx ,x ′β∗(x
′) = β∗(x)

∀a ∈ A (τa ◦ηX )(x) =

�

y 7→
∑

x ′∈X

δx ,x ′ ta(x
′)(y)

�

= [y 7→ ta(x)(y)] = ta(x)

(iii) Factorization of the final morphism

Because α̃# is an F -coalgebra, there exists a unique coalgebra morphism ϕα̃# from α̃# to
ω. However, we want the semantics of α̃# to be a probability distribution over words,
hence to live in M (A∞). The step (iii) thus aims to factorize ϕα̃# using a new F -
coalgebra Π : M (A∞) → FM (A∞) and a new coalgebra morphism ¹−º from α̃# to
Π.

DX M (A∞) Ω (∗)
¹−º ϕΠ

ϕα̃#

First, define Π :M (A∞)→ FM (A∞) by

Π(m) = 〈m(εA∞), m(ε), a 7→ ma〉

The F -coalgebraΠwill play the role of a final object in a certain subcategory of Coalg(F).
The unique coalgebra morphism fromΠ toω is denoted byϕΠ. It is injective (see Lemma
33). The following lemma states in which cases the factorization is possible.

Proposition 14. Let β = 〈β⊕,β∗, a 7→ τa〉 : Y → FY be an F-coalgebra. The two following
conditions are equivalent:

(i) There exists an F-coalgebra morphism ¹−º from β to Π.

(ii) The equation β⊕ = β∗ +
∑

a∈Aβ⊕ ◦τa holds.

In this case, this morphism is unique.

Proof. Refer to the proof of Theorem 34 which is the same in the general case.

Remark. If (i) and (ii) are true, then ϕΠ ◦ ¹−º is a coalgebra morphism from β to ω,
hence ϕΠ ◦ ¹−º = ϕβ by uniqueness. Using the injectivity of ϕΠ, one can see that for
any u, v ∈ T X , ¹uº = ¹vº⇔ ϕβ (u) = ϕβ (v). This is important because checking if
ϕβ (u) = ϕβ (v) is made easy by the use bisimulation up-to techniques.
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Let us check that α̃# : DX → F DX satisfies (ii) in Proposition 14.

α̃#
⊕(u) =

∑

x∈X

u(x)α̃⊕(x) =
∑

x∈X

u(x)
∑

z∈LX

α(x)(z)

=
∑

x∈X

u(x)α(x)(∗) +
∑

x∈X

∑

(a,y)∈A×X

u(x)α(x)(a, y)

=
∑

x∈X

u(x)α̃∗(x) +
∑

a∈A

∑

y∈X

τa(u)(y)

= α̃#
∗ (u) +

∑

a∈A

(α̃#
⊕ ◦τa)(u) (because α̃⊕(y) = 1)

This achieves the proof of the following proposition.

Proposition 15. The morphism ϕα̃# decomposes as a unique coalgebra morphism ¹−º
from α̃# to Π followed by an injective coalgebra morphism ϕΠ from Π to ω, as in (∗).

We define ¹¹¹−ººº= ¹−º ◦ηX as our definitive semantics.

Link with the usual semantics

We conclude this section by comparing the trace semantics via determinization we just
obtained with the trace semantics of PTS defined previously. First express ¹−º|S∞ (see
the proof of Theorem 34). For all u ∈ DX , a ∈ A, w ∈ A∗:

¹uº(εA∞) = α̃#
⊕(u) ¹uº(ε) = α̃#

∗ (u)
¹uº(awA∞) = ¹τa(u)º(wA∞) ¹uº(aw) = ¹τa(u)º(w)

The following lemma makes a rather intuitive link between ¹−º and ¹¹¹−ººº and will help
us to get back to the first semantics defined in the beginning of this section.

Lemma 16. Let u ∈ DX . Then ¹uº=
∑

x∈X u(x)¹¹¹xººº.

Proof. By induction on w (for all u). First see that ¹uº(ε) = α̃#
∗ (u) =

∑

x∈X u(x)α̃∗(x) =
∑

x∈X u(x)¹¹¹xººº(ε). Then ¹uº(aw) = ¹τa(u)º(w) =
∑

y∈X τa(u)(y)¹¹¹yººº(w) by induction
hypothesis. So ¹uº(aw) =

∑

x ,y∈X u(x)ta(x)(y)¹¹¹yººº(w) =
∑

x∈X u(x)¹ta(x)º(w) again
by induction hypothesis. But ¹ta(x)º(w) = ¹(τa ◦ηX )(x)º(w) = ¹¹¹xººº(aw) because ¹−º
is a coalgebra morphism, so ¹uº(aw) =

∑

x∈X u(x)¹¹¹xººº(aw). The proof is the same for
¹uº(wA∞) =

∑

x∈X u(x)¹¹¹xººº(wA∞). Then, both measures coincide on S∞ so ¹uº =
∑

x∈X u(x)¹¹¹xººº according to Theorem 5.

Using this lemma we have the following expressions.

¹¹¹xººº(εA∞) = (α̃#
⊕ ◦ηX )(x) = α̃⊕(x) =

∑

z∈X

α(x)(z) = 1

¹¹¹xººº(ε) = (α̃#
∗ ◦ηX )(x) = α̃∗(x) = α(∗)

¹¹¹xººº(awA∞) = ¹(τa ◦ηX )(x)º(wA∞) = ¹ta(x)º(wA∞) =
∑

y∈X

α(x)(a, y) ·¹¹¹yººº(wA∞)

¹¹¹xººº(aw) = ¹(τa ◦ηX )(x)º(w) = ¹ta(x)º(w) =
∑

y∈X

α(x)(a, y) ·¹¹¹yººº(w)

These are the same expressions as in the beginning of this section. Hence:

Proposition 17. The two trace semantics denoted by ¹¹¹−ººº coincide.
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2.2 Algorithm

Let α : X → P LX and x , y ∈ X . The aim of this paragraph is to give an algorithm that
takes x , y ∈ X and tells whether ¹¹¹xººº= ¹¹¹yººº or not. It will directly profit from the deter-
minization construction performed in the last section. Our algorithm is greatly inspired
by HKC, and more specifically, by its generalization to weighted automata given in [3].
Indeed, the very same bisimulation up-to congruence techniques can leverage the de-
terminized structure of α̃#.

Note that α̃# has type DX → I × I × (DX )A. Let ϕα̃# be the final morphism DX →
(I× I)A

∗
. The FI×I-coalgebra α̃# can be easily injected into the "bigger" FR×R-coalgebra

β : RX
ω → R × R × (R

X
ω)

A where RX
ω is the set of finitely supported functions X → R.

Thus we get a vector space structure (see [2]). Indeed, just define for every u ∈ RX
ω:

β(u) =

*

∑

x∈X ,a∈A,y∈X

u(x)α(x)(a, y),
∑

x∈X

u(x)α(x)(∗), a 7→

�

y 7→
∑

x∈X

u(x)α(x)(a, y)

�

+

We study bisimulations in the sense of β = 〈β⊕,β∗, a 7→ τa〉 : RX
ω → FRX

ω. Note that
β⊕,β∗ and each τa are linear functions. Let ϕβ be the final morphism RX

ω→ (R×R)
A∗ .

The following lemma shows that changing α̃# into β does not affect trace equivalence.

Lemma 18. Let i be the injection DX → RX
ω and j be the injection (I× I)A

∗
→ (R×R)A

∗
.

Then j ◦ϕα# = ϕβ ◦ i.

Now we omit writing i and j. The following corollary allows us to work with bisimula-
tion up-to congruence on RX

ω, as defined below.

Corollary 19. For every x , y ∈ X , ¹¹¹xººº= ¹¹¹yººº iff ϕβ (δx) = ϕβ (δy).

Let R ⊆ RX
ω × R

X
ω. Its congruence closure c(R) is the least congruence relation that

contains R, i.e., that satisfies

(u, v) ∈ R
(u, v) ∈ c(R) (u, u) ∈ c(R)

(u, v) ∈ c(R)
(v, u) ∈ c(R)

(u, v) ∈ c(R) (v, w) ∈ c(R)
(u, w) ∈ c(R)

(u, v) ∈ c(R)
(λu,λv) ∈ c(R)

(λ ∈ R)
(u, u′) ∈ c(R) (v, v′) ∈ c(R)
(u+ u′, v + v′) ∈ c(R)

Lemma 20. The functions a : R 7→ {z + z′ | z ∈ R, z′ ∈ R} and mλ : R 7→ {λz | z ∈ R} are
compatible with bβ for all λ ∈ R.

Proof. Let λ ∈ R. If R ⊆ bβ (R′) and we take (u′, v′) ∈ mλ(R) then there exists (u, v) ∈ R
such that (u′, v′) = (λu,λv). We have (u, v) ∈ bβ (R′) so o(u′) = o(λu) = λo(u) =
λo(v) = o(λv) = o(v′). Given a ∈ A we have (τa(u),τa(v)) ∈ R′ so (τa(u′),τa(v′)) =
(λτa(u),λτa(v)) ∈ mλ(R′). Thus mλ(R) ⊆ bβ (mλ(R′)).
Let (u′′, v′′) ∈ a(R), so (u′′, v′′) = (u + u′, v + v′) where (u, v) ∈ R and (u′, v′) ∈ R.
So o(u′′) = o(u) + o(u′) = o(v) + o(v′) = o(v′′) and for all a ∈ A, (τa(u′′),τa(v′′)) =
(τa(u) +τa(u′),τa(v) +τa(v′)) ∈ a(R′). Thus a(R) ⊆ bβ (a(R′)).

According to Lemmas 13 and 20, the function c : P (RX
ω × R

X
ω) → P (R

X
ω × R

X
ω) is

compatible with bβ , because c =
�

id ∪ r ∪ s ∪ t ∪ a ∪
⋃

λ∈Rmλ

�ω
. Thus, if u, v ∈ RX

ω are
related by a bisimulation up-to congruence, they are bisimilar, and this yields ϕβ (u) =
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ϕβ (v). In our case, when u = δx and v = δy for some x , y ∈ X , this further yields
¹¹¹xººº = ¹¹¹yººº. The following algorithm HKC∞ computes the smallest bisimulation that
relates x and y , hence it computes whether ¹¹¹xººº= ¹¹¹yººº or not.

HKC∞(x , y)

(1) R := ;; todo := ;
(2) insert (δx ,δy) into todo
(3) while todo is not empty do

(3.1) extract (u, v) from todo
(3.2) if (u, v) ∈ c(R) then continue
(3.3) if β⊕(u) 6= β⊕(v) then return false
(3.3’) if β∗(u) 6= β∗(v) then return false
(3.4) for all a ∈ A, insert (τa(u),τa(v)) into todo
(3.5) insert (u, v) into R

(4) return true

Theorem 21 (inspired from theorem 4.3 in [3]). Whenever HKC∞(x , y) terminates, it
returns true iff ¹¹¹xººº= ¹¹¹yººº.

Proof. Observe that R ⊆ bβ (c(R) ∪ todo) is an invariant for the while loop at step (3).
If HKC∞ returns true then todo is empty and thus R ⊆ bβ (c(R)) so R is a bisimulation
up-to c that contains (δx ,δy) and we already know that this yields ¹¹¹xººº= ¹¹¹yººº. If HKC∞
returns false, it encounters a pair (u, v) such that β�(u) 6= β�(v) for a certain � ∈ {⊕,∗}.
There exists a word w such that u = τw(δx) and v = τw(δy). Therefore ϕβ (δx)(w) =
ϕβ (τw(δx))(ε) = β�(u) 6= β�(v) = ϕβ (τw(δy))(ε) = ϕβ (δy)(w) so ϕβ (δx) 6= ϕβ (δy)
and we know that this implies ¹¹¹xººº 6= ¹¹¹yººº.

Despite the fact that during the determinization the state space always becomes infinite,
the following results show that if the initial state space X is finite, then HKC∞ does
terminate.

Theorem 22 (see [5]). Let R be a ring and X be a finite set. Let R ⊆ RX ×RX be a
relation and let (v, v′) ∈ RX × RX be a pair of vectors. We construct a generating set
for a submodule of RX by defining UR = {u − u′ | (u, u′) ∈ R}. Then (v, v′) ∈ c(R) iff
v − v′ ∈ [UR].

Proposition 23. If X is finite, HKC∞(x , y) terminates for every x , y ∈ RX
ω.

Proof. The set X is finite so RX
ω = R

X . Suppose we have an infinite computation and let
(un, vn) be the pair checked at step n. The rank of any family of vectors of RX is bounded
by |X |<∞ and denoted by rank. When the stationary sequence (rank{(ui− vi)i≤n})n∈N
has reached its limit at step N , then the rest of the sequence is in the submodule of RX

generated by the first (un − vn)n≤N . According to Theorem 22 with R = R, this means
that the (un, vn)n≥N+1 are in the congruence closure of the relation {(un, vn) | n ≤ N}.
So at each step the test (3.2) succeeds and the cardinality of todo is decreased by 1.
This cardinality is finite as step N so the number of following steps is finite too, yielding
a contradiction.

Theorem 24 (Summary). For any α : X → P LX with X finite, and any x , y ∈ X ,
HKC∞(x , y) terminates and returns true iff ¹¹¹xººº= ¹¹¹yººº.
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Basic example of HKC∞

To begin with, here is a very simple PTS that demonstrates the power of bisimulation
up-to congruence.

x ∗ ya,1/2
1/2

a,1/2
1/2

If we try to compute HK(δx ,δy) on the determinized automaton, the algorithm encoun-
ters the pairs (δx/2

k,δy/2
k), k ≥ 0 and never stops. On the other hand, HKC∞(x , y)

stops after one step because it has immediately spotted that (δx/2,δy/2) is in the con-
gruence closure of the relation {(δx ,δy)}.

Example of HKC∞ with bisimulation up-to as an accelerant

Let us compute HKC∞ to know if in the following automaton the states x and z generate
the same probability measure. Here A= {a}.

x y z

∗

i

a,1/6

1/3

a,1/2

a,1/3

2/3

a,1/3

1/3

a,1/3

a,1

Because X is finite, RX
ω has a basis (ex , ey , ez , ei). An element u ∈ RX

ω is seen a column
vector ux ex +uy ey +uzez +uiei in this basis. Moreover α̃#

⊕ and α̃#
∗ are linear forms that

can be seen as the row vectors L⊕ =
�

1 1 1 1
�

and L∗ =
�

1/3 2/3 1/3 0
�

, and
τa is an endomorphism with a transition matrix Ma defined by (Ma) j,k = ta(k)( j).

u=







ux
uy
uz
ui






Ma =







0 0 0 0
1/6 1/3 0 0
0 0 1/3 0

1/2 0 1/3 1






L =

�

L⊕
L∗

�

The algorithm begins with todo = {(ηX (x),ηX (z))} = {(ex , ez)} and R = ;. It checks
that Lex = Lez , etc. as shown in the following table.
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Step (3.1) (3.2) (3.3) (3.4) (3.5)
Loop

counter
(u, v) extracted

from todo
Check

(u, v) ∈ c(R)
Check Lu= Lv (Mau, Ma v) added to

todo
Cardinality

of R

1 (







1
0
0
0






,







0
0
1
0






) Fail

�

1
1/3

�

=
�

1
1/3

�

(







0
1/6
0

1/2






,







0
0

1/3
1/3






) 1

2 (







0
1/6
0

1/2






,







0
0

1/3
1/3






) Fail

�

2/3
1/9

�

=
�

2/3
1/9

�

(







0
1/18

0
1/2






,







0
0

1/9
4/9






) 2

3 (







0
1/18

0
1/2






,







0
0

1/9
4/9






) Success / / 2

4 Empty / / / /

The check succeeds in loop 3 because (u, v) ∈ c(R) according to theorem 22:







0
1/18

0
1/2






−







0
0

1/9
4/9






=







0
1/18
−1/9
1/18






=

1
3







0
1/6
−1/3
1/6






=

1
3













0
1/6
0

1/2






−







0
0

1/3
1/3













Because todo is eventually empty, the algorithm returns true. Indeed, if we compute
directly the measures ¹¹¹xººº and ¹¹¹zººº, we can see that ¹¹¹xººº(an) = 1/3n+1, ¹¹¹xººº(aω) =
1/2 and same for ¹¹¹zººº. Here the bisimulation up to congruence check is necessary for
termination. See what is happening in the determinized infinite automaton.







1
0
0
0













0
0
1
0













0
1/6
0

1/2













0
0

1/3
1/3













0
1/18

0
1/2













0
0

1/9
4/9







...

...







0
1/(2× 3n)

0
1/2













0
0

1/3n

(1− 3−n)/2







...

...

a

a

a

a

a

a

a

a

a

a

The construction of the bisimulation up to equivalence (dashed + dotted lines) would
take an infinite number of steps. But the construction of the bisimulation up to congru-
ence (dashed lines) takes only 2 steps.

Example of HKC∞ where infinite traces matter

Get back to the example of the introduction, taking A= {a, b}.

y za,1/2 b,1/2 a,3/4 b,1/4
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Take (ey , ez) as a basis of RX . Then

u=
�

uy
uz

�

Ma =
�

1/2 0
0 3/4

�

Mb =
�

1/2 0
0 1/4

�

L =
�

1 1
0 0

�

In the first loop, everything is fine because L
�

1
0

�

=
�

1
0

�

= L
�

0
1

�

. Then todo =
§��

1/2
0

�

,
�

0
3/4

��

,
��

1/2
0

�

,
�

0
1/4

��ª

so both possible next equality checks fail:
�

1/2
0

�

6=
�

3/4
0

�

and
�

1/2
0

�

6=
�

1/4
0

�

. Thus, HKC∞ returns false. Remark that not caring about

the first line of L amounts to use HKC, which returns true because it does not take into
account infinite words.

3 General case

In this section, we generalize the trace semantics previously defined. We work with con-
tinuous PTS, defined later as coalgebras for the analogue of functor P L in the category
Meas. The underlying distributive law is brought to light, so that the origin of the de-
terminization process is better understood. The following table sums up the analogies
and differences with the discrete case.

Discrete case General case
Category Sets Meas

Usual operation
∑ ∫

Language functor L Measurable version of L
Machine functor F Measurable version of F

Probability monad Probability monad P Giry’s monad P
Determinization monad Sub-probability monad D Sub-Giry’s monad D

Initial state space Set X Measurable space (X ,ΣX )
Determinized state Finitely supported vector Finite measure (≤ 1)

Transitions Matrix ta : X × X → I Kernel ta : X ×ΣX → I
Final F -coalgebra ω Measurable version of ω
Measure coalgebra Π Measurable version of Π

Pseudo-final morphism ¹−º : DX →M (A∞) ¹−º : DX → DA∞

In this section we work in the category Meas of measurable spaces and functions. It is
easy to adapt functors L and F , but considering the monads we will need some addi-
tional measure-theoretic background.

Given measurable spaces X , Y and a measurable function f : X → Y , define LX =
A× X + 1 along with its σ-algebra ΣLX = P (A)⊗ΣX ⊕P (1), and L f = idA × f + id1.
Moreover, define FX = I× I× X A along with its σ-algebraB(I)⊗B(I)⊗

⊗

a∈AΣX and
F f = idI × idI × f A.

Integration

Let (X ,ΣX , m) be a measure space and f : X → R be a measurable function. If f (X ) =
{α1, ...αn} for some α1, ...αn ∈ R+, then f is called a simple function and its inte-
gral can be defined as

∫

X f dm =
∑n

i=1αim( f −1({αi})). If f ≥ 0 pointwise, define
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∫

X f dm = sup
�∫

X gdm | g ≤ f , g simple
	

∈ [0,∞]. Finally, for any f : X → R, de-
compose f = f + − f − where f + ≥ 0 and f − ≥ 0. If their integrals are not both ∞,
define

∫

X f dm =
∫

X f +dm −
∫

X f −dm. If this is finite, we say that f is m-integrable.
Furthermore, for any S ∈ ΣX , the indicator function 1S is measurable and we define
∫

S f dm=
∫

X 1S f dm.

Given any measurable function g : X → Y and any measure m : ΣX → R+, the im-
age measure of m by g is m◦ g−1. For any measurable f : Y → R, f is m◦ g−1-integrable
iff f ◦ g is m-integrable and in this case,

∫

Y f d(m ◦ g−1) =
∫

X ( f ◦ g)dm.

Actually, each positive measurable function X → R+ is the pointwise limit of an increas-
ing sequence of simple functions. In order to prove some property for every positive
measurable function, one can prove it for simple functions (or for indicator functions,
if it is preserved by linear combinations) and show that the property is preserved when
taking the limit. Many such proofs use the monotone convergence theorem, which states
that if ( fn)n∈N is an increasing sequence of positive functions with pointwise limit f , then
f is measurable and

∫

X f dm= lim
∫

X fndm.

The Giry monad

The Giry monad [6] provides a link between probability theory and category theory.

Definition 25. In Meas, the Giry monad (P,η,µ) is defined as follows. For any measurable
space X , PX is the space of probability measures over (X ,ΣX ), and ΣPX is the σ-algebra
generated by the functions eX

S : PX → I defined by eX
S (m) = m(S). For any measurable

function g : X → Y , (Pg)(m) = m ◦ g−1.
The unit is defined by ηX (x)(S) = 1S(x) and the multiplication by µX (Φ)(S) =

∫

PX eX
S dΦ.

In the same way, one can define the sub-Giry monad (D,η,µ). The only difference is
that DX is then the space of sub-probability measures over (X ,ΣX ). There is a natural
transformation ι : P⇒ D that comes from the inclusion : ιX (m) = m.

3.1 Trace semantics via determinization

The aim of this section is to define trace semantics for continuous PTS, i.e., coalgebras
of the form α : X → PLX . We proceed in the same way as for discrete systems.

(i) Transform α into a more convenient coalgebra α̃ : X → FDX .

(ii) Determinize α̃ into an F -coalgebra α̃# : DX → FDX .

(iii) Factorize the final morphism : ϕα̃# = ϕΠ ◦ ¹−º and take ¹¹¹−ººº= ¹−º ◦ηX .

The following diagram sums up the construction. Here Ω = (I × I)A
∗

and ΣΩ is the
Σ-algebra generated by the functions L 7→ L(w).
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X DX DA∞ Ω

PLX

DLX FDX FDA∞ FΩ

α

ιLX

ηX ¹−º ϕΠ

α̃# Π ω

eX

F¹−º FϕΠ

ϕα̃#

Fϕα̃#

α̃

¹¹¹−ººº

(i) Translation: from α to α̃

Proposition 26. For any measurable space X , the function eX : DLX → FDX defined by

eX (m) = 〈m(LX ), m(1), a 7→ [S 7→ m({a} × S)]〉

is measurable. Moreover, e : DL⇒ FD is a natural transformation.

Proof. First, see that this is a measurable function. Note that we can write eX = 〈eLX
LX , eLX

1 , a 7→
φa〉, where φa : DLX → DX is defined by φa(m)(S) = m({a} × S). According to
Lemma 2, it suffices to prove that the |A| + 2 components are measurable functions.
The first two are, by definition of ΣDX . Given a ∈ A, use Lemma 1 and see that for
any S ∈ ΣX , eX

S ◦ φa = eLX
{a}×S is measurable because {a} × S ∈ ΣLX . For naturality,

let f : X → Y be a morphism. Note that if BA ∈ ΣA, BY ∈ ΣY and B1 ∈ Σ1, then
L f −1(BA× BY + B1) = BA× f −1(BY ) + B1. Thus, e is a natural transformation because

(eY ◦DL f )(m) = 〈m(L f −1(A× Y + 1)), m(L f −1(1)), a 7→ [S 7→ m(L f −1({a} × S))]〉

= 〈m(A× X + 1), m(1), a 7→ [S 7→ m({a} × f −1(S))]〉

= 〈eLX
LX , eLX

1 , a 7→ D f ◦φa〉(m) = (FD f ◦ eX )(m)

Now take α̃ = eX ◦ ιLX ◦ α. We will write its components 〈α̃⊕, α̃∗, a 7→ ta〉. A direct
expression of α̃ is given by α̃(x) = 〈α(x)(LX )

︸ ︷︷ ︸

1

,α(x)(1), a 7→ [S 7→ α(x)({a} × S)]〉.

(ii) Determinization

The following lemma (inspired from [13]) establishes some conditions under which
there is a canonical notion of determinization.

Lemma 27. Let C be a category, F : C→ C be an endofunctor and (T,η,µ) be a monad
on C. Let f : X → T FX be a T F-coalgebra and h : T F T X → F T X be an Eilenberg-Moore
T-algebra. Then there exists a unique T-algebra morphism f # : (T X ,µX ) → (F T X , h)
such that f = f # ◦ηX .
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Proof. Uniqueness. Let f # be such a morphism, then, using the first diagram of monads
(i) and that f # is a T -algebra morphism (ii), we get

f # =
(i)

f # ◦µX ◦ TηX =
(ii)

h ◦ T f # ◦ TηX = h ◦ T ( f # ◦ηX ) = h ◦ T f

Existence. Take f # = h ◦ T f , then, using the naturality of µ : T T ⇒ T (i) and that h is
an Eilenberg-Moore T -algebra (ii), we get that f # is a T -algebra morphism because

f # ◦µX = h ◦ T f ◦µX =
(i)

h ◦µF T X ◦ T T f =
(ii)

h ◦ Th ◦ T T f = h ◦ T (h ◦ T f ) = h ◦ T f #

Furthermore, using the naturality of η : IdC ⇒ T and that h is an Eilenberg-Moore
T -algebra, f # ◦ηX = h ◦ T f ◦ηX = h ◦ηF T X ◦ f = f .

Lemma 28. With the same notations as for Lemma 27, and given a distributive law λ :
T F ⇒ F T, then h= FµX ◦λT X : T F T X → F T X is an Eilenberg-Moore T-algebra.

Proof. The first diagram of distributive laws (i) and monads (ii) yields

h ◦ηF T X = FµX ◦λT X ◦ηF T X =
(i)

FµX ◦ FηT X ◦ idFX = F(µX ◦ηT X ) =
(ii)

F idT X = idT FX

Furthermore

h ◦ Th= FµX ◦λT X ◦ T FµX ◦ TλT X

= FµX ◦ F TµX ◦λT T X ◦ TλT X (naturality of λ)

= F(µX ◦ TµX ) ◦λT T X ◦ TλT X

= F(µX ◦µT X ) ◦λT T X ◦ TλT X (second diagram of the monad)

= FµX ◦ FµT X ◦λT T X ◦ TλT X

= FµX ◦λT X ◦µF T X (second diagram of distributive laws)

= h ◦µF T X

The next step is to define a distributive law λ : DF ⇒ FD in order to apply Lemmas 27
and 28. In the following we write idFX = 〈π⊕X ,π∗X , a 7→ πa

X 〉. Note that πε : F ⇒ I (for
ε ∈ {∗,⊕}) and πa : F ⇒ IdC (for a ∈ A) are natural transformations.

Lemma 29. Let f : X → I be a measurable function. Then g f : DX → I defined by
g f (m) =

∫

X f dm is measurable. Furthermore, if g : DI → I is the measurable function
defined by g(m) =

∫

I idIdm, we have g f ◦ηX = f and g f ◦µX = g ◦Dg f .

Proof. Measurability. If f = 1B for some B ∈ ΣX , remark that g f (m) =
∫

X 1Bdm =
m(B) = eX

B (m) so g f is measurable. By linearity of the integral, g f is measurable for
any simple function. Finally if f is the pointwise limit of an increasing sequence of
simple functions ( fn)n∈N, we have that g f (m) =

∫

X f dm=
∫

X lim fndm= lim
∫

X fndm=
lim g fn

(m) by the monotone convergence theorem.
Equations. If f = 1B for some B ∈ ΣX , then g f ◦ ηX = eX

B ◦ ηX = 1B = f and for any
Φ ∈ DDX , (g f ◦ µX )(Φ) = µX (Φ)(B) =

∫

DX eX
B dΦ =

∫

I idId(DeX
B (Φ)) = (g ◦ Dg f )(Φ).

Note that both equations are preserved by linear combinations, hence the result is true
for any simple function. Finally, if f is the pointwise limit of an increasing sequence
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of simple functions ( fn)n∈N for which the result is true, we already know that g f is the
pointwise limit of the increasing sequence g fn

. In particular g fn
◦ ηX → g f ◦ ηX and

g fn
◦ µX → g f ◦ µX . For any Φ ∈ DDI, (g ◦Dg fn

)(Φ) =
∫

I idId(Dg fn
(Φ)) =

∫

DI g fn
dΦ→

∫

DI g f dΦ = (g ◦ Dg f )(Φ). Hence both equations are true for all measurable f : X →
I.

Taking f = idI and using this lemma we get that g : DI → I satisfies g ◦ ηI = idI and
g ◦ µI = g ◦Dg, hence g is an Eilenberg-Moore D-algebra. For any object X of Meas,
define λX : DFX → FDX by

λX = 〈g ◦Dπ⊕X , g ◦Dπ∗X , a 7→ Dπa
X 〉

This is a measurable function because each component is measurable.

Proposition 30. Let X , Y be objects of Meas and f : X → Y be a measurable function.
The following diagrams commute. Consequently, λ : DF ⇒ FD is a distributive law.

DFX DFY FX FX DDFX DFDX FDDX

FDX FDY DFX FDX DFX FDX

DF f

λX λY

FD f

idFX

ηFX

λX

FηX

DλX λDX

λX

µFX FµX

Proof.

λY ◦DF f = 〈g ◦Dπ⊕Y ◦DF f , g ◦Dπ∗Y ◦DF f , a 7→ Dπa
Y ◦DF f 〉

= 〈g ◦D(π⊕Y ◦ F f ), g ◦D(π∗Y ◦ F f ), a 7→ D(πa
Y ◦ F f )〉

= 〈g ◦D(idI ◦π⊕X ), g ◦D(idI ◦π∗X ), a 7→ D( f ◦πa
X )〉

= 〈g ◦Dπ⊕X , g ◦Dπ∗X , a 7→ D f ◦Dπa
X 〉 (π⊕, π∗ natural)

= FD f ◦λX

λX ◦ηFX = 〈g ◦Dπ⊕X ◦ηFX , g ◦Dπ∗X ◦ηFX , a 7→ Dπa
X ◦ηFX 〉

= 〈g ◦ηI ◦π⊕X , g ◦ηI ◦π∗X , a 7→ ηX ◦πa
X 〉 (naturality of η)

= 〈π⊕X ,π∗X , a 7→ ηX ◦πa
X 〉 (g is an EM algebra)

= FηX

FµX ◦λDX ◦DλX

= FµX ◦ 〈g ◦Dπ⊕DX ◦DλX , g ◦Dπ∗DX ◦DλX , a 7→ Dπa
DX ◦DλX 〉 (definition of λ)

= FµX ◦ 〈g ◦D(π⊕DX ◦λX ), g ◦D(π∗DX ◦λX ), a 7→ D(πa
DX ◦λX )〉

= FµX ◦ 〈g ◦D(g ◦Dπ⊕X ), g ◦D(g ◦Dπ∗X ), a 7→ DDπa
X 〉 (definition of λ)

= 〈g ◦Dg ◦DDπ⊕X , g ◦Dg ◦DDπ∗X , a 7→ µX ◦DDπa
X 〉

= 〈g ◦µI ◦DDπ⊕X , g ◦µI ◦DDπ∗X , a 7→ µX ◦DDπa
X 〉 (g EM algebra)

= 〈g ◦Dπ⊕X ◦µFX , g ◦Dπ∗X ◦µFX , a 7→ Dπa
X ◦µFX 〉 (naturality of µ)

= λX ◦µFX
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Let us compute the value of our resulting determinization. Given α̃ : X → FDX , we
recall the notation α̃ = 〈α̃⊕, α̃∗, a 7→ ta〉, then take h = FµX ◦ λDX (Lemma 28) and
α̃# = α̃ ◦Dh (Lemma 27). We get

α̃# = h ◦Dα̃
= FµX ◦λDX ◦Dα̃
= FµX ◦ 〈g ◦D(π⊕DX ◦ α̃), g ◦D(π∗DX ◦ α̃), a 7→ D(πa

DX ◦ α̃)〉
= 〈g ◦Dα̃⊕, g ◦Dα̃∗, a 7→ µX ◦Dta〉

Let m ∈ DX . This more explicit expression shows that the coalgebra that arises from the
determinization is natural in the sense that the components of α̃# are basically obtained
by integrating the information provided by α.

α̃#(m) =

�∫

X

α̃⊕dm,

∫

X

α̃∗dm, a 7→
�

S 7→
∫

X

ta(−)(S)dm

��

=

�∫

X

α(−)(LX )dm,

∫

X

α(−)(1), a 7→
�

S 7→
∫

X

α(−)({a} × S)dm

��

(iii) Final coalgebra

This heavy determinization part allows us to work on F -coalgebras, which are nice ones
because there exists a final object in Coalg(F).

Proposition 31. Let Ω= (I× I)A
∗

and ΣΩ be the smallest σ-algebra that makes the func-
tions ew : Ω→ I×I defined by ew(L) = L(w)measurable for every w ∈ A∗. Letω : Ω→ FΩ
be defined by ω(L) = 〈L(ε), a 7→ La〉. Then (Ω,ω) is the final F-coalgebra.

Proof. First,ω is measurable. Indeed π1◦eε and π2◦eε are (where πi : I×I→ I) and for
a ∈ A, the function φa : L 7→ La is measurable because ew ◦φa = eaw is measurable for
every w ∈ A∗. Let β = 〈β⊕,β∗, a 7→ τa〉 : X → FX be an F -coalgebra. It is easy to see that
there is at most one coalgebra morphism ϕ from β to ω, because the commutation of
the following diagram yields ϕ(x)(ε) = 〈β⊕(x),β∗(x)〉 and ϕ(x)(aw) = ϕ(τa(x))(w).

X Ω

FX FΩ

ϕ

β ω

Fϕ

The only thing to check is that this ϕ is measurable. We prove it by induction on words.
The function eε ◦ϕ = 〈β⊕,β∗〉 is measurable, and if ew ◦ϕ is measurable then eaw ◦ϕ =
(ew ◦ϕ) ◦τa is measurable too by induction hypothesis.

Thus for any F -coalgebra β the final morphism towardsω, denotedϕβ , gives a canonical
notion of semantics. What we want it something slightly more specific that takes into
account the way α̃# was built to produce a probability measure inDA∞. This is obtained
via a pseudo-final coalgebra Π : DA∞→ FDA∞ as follows.

Proposition 32. Let π : A∞→ LA∞ be defined by π(ε) = ∗ and π(aw) = (a, w). This is
the final L-coalgebra.
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Proof. The σ-algebra on LA∞ is generated by the sets 1 and {a} × S for S ∈ ΣA∞ .
Applying Lemma 4 (v), see that π−1(1) = {ε} ∈ ΣA∞ and π−1({a} × S) = aS ∈ ΣA∞ .
Because of Lemma 1 this shows that π is measurable. Let γ : X → LX be an L-coalgebra.
There is at most one coalgebra morphism from γ to π. Indeed, the commutation of the
following diagram yields that π(ϕ(x)) = (idA × ϕ + id1)(γ(x)) so if γ(x) = ∗ then
ϕ(x) = ε, and if γ(x) = (a, y) then ϕ(x) = a ·ϕ(y).

X A∞

LX LA∞

ϕ

γ π

Fϕ

Using Lemma 1, we check that ϕ is measurable by focusing on sets in S∞. First see
that ϕ−1({ε}) = γ−1(1) ∈ ΣX because γ is measurable and that ϕ−1(εA∞) = X ∈ ΣX .
Assume that ϕ−1({w}) and ϕ−1(wA∞) ∈ ΣX , then ϕ−1({aw}) = γ−1({a} × ϕ−1({w}))
and ϕ−1(awA∞) = γ−1({a} ×ϕ−1(wA∞)) are in ΣX because γ is measurable.

LetΠ : A∞→ FA∞ be the F -coalgebraΠ= eA∞ ◦Dπ. It has a direct expression involving
the measure derivative; it is exactly the same as the Π of section 2.

Π(m) = 〈m(π−1(LA∞)), m(π−1(1)), a 7→ [S 7→ m(π−1({a} × S))]〉
= 〈m(A∞), m(ε), a 7→ ma〉

The aim is now to factorize the semantics obtained viaω into semantics obtained via Π.
The following result is kind of a completeness property for this operation.

Lemma 33. The final morphism ϕΠ from Π to ω is injective.

Proof. For any m, m′ ∈ DA∞, in order to have m = m′, it is sufficient to prove that
m|S∞ = m′|S∞ according to Theorem 5. By induction on w, we prove that for all m, m′ ∈
DA∞ such that ϕΠ(m) = ϕΠ(m′), then 〈m(wA∞), m(w)〉 = 〈m′(wA∞), m′(w)〉. First,
〈m(εA∞), m(ε)〉 = ϕΠ(m)(ε) = ϕΠ(m′)(ε) = 〈m′(εA∞), m′(ε)〉. Note that ϕΠ(m) =
ϕΠ(m′) impliesϕΠ(ma)(w) = ϕΠ(m)(aw) = ϕΠ(m′)(aw) = ϕΠ(m′a)(w) so thatϕΠ(ma) =
ϕΠ(m′a). Use the induction hypothesis to see that 〈m(awA∞), m(aw)〉= 〈ma(wA∞), ma(w)〉=
〈m′a(wA∞), m′a(w)〉 = 〈m

′(awA∞), m′(aw)〉. This achieves the induction, so m and m′

coincide on S∞, hence m= m′.

The following proposition states precisely in which cases the factorization can be done.
This is a variant of Theorem 5 in which we really see that our system is making one
step. This version is a bit higher-end than Theorem 14 because it also proves that the
involved functions are measurable.

Theorem 34. Let β = 〈β⊕,β∗, a 7→ τa〉 : Y → FY be an F-coalgebra. The two following
conditions are equivalent:

(i) There exists an F-coalgebra morphism ¹−º from β to Π.

(ii) The equation β⊕ = β∗ +
∑

a∈Aβ⊕ ◦τa holds.

In this case, this morphism is unique.

For convenience we will now denote eA∞
S ◦¹−º by ¹−º(S), and φa ◦¹−º by ¹−ºa, where

the measure derivative function φa : m 7→ ma is measurable as a component of Π.
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Proof. (i) ⇒ (ii) Assume that ¹−º is a coalgebra morphism from β to Π. Commuta-
tion of the diagram yields 〈β⊕,β∗, a 7→ ¹−º ◦ τa〉 = 〈¹−º(A∞),¹−º(ε), a 7→ ¹−ºa〉. Let
y ∈ Y . Because ¹yº is a measure, β⊕(y) = ¹yº(εA∞) = ¹yº(ε) +

∑

a∈A¹yº(bA∞).
Thus β⊕(y) = β∗(y) +

∑

a∈A¹τa(y)º(A∞) = β∗(y) +
∑

a∈A(β⊕ ◦τa)(y).

Uniqueness. If ¹−º′ is another such morphism, we have ¹−º(A∞) = ¹−º′(A∞), ¹−º(ε) =
¹−º′(ε) and for any a ∈ A, ¹−º ◦ τa = ¹−ºa and ¹−º′ ◦ τa = ¹−º′a. An immediate in-
duction yields ¹−º|S∞ = ¹−º

′
|S∞

, thus ¹−º= ¹−º′ by Theorem 5.

(ii)⇒ (i) Assume that (ii) holds. Let us define ¹−º|S∞ by induction:

¹yº|S∞(εA
∞) = β⊕(y) ¹yº|S∞(ε) = β∗(y)

¹yº|S∞(awA∞) = ¹τa(y)º|S∞(wA∞) ¹yº|S∞(aw) = ¹τa(y)º|S∞(w)

We must prove that it can be extended to a measure, using Theorem 5. First, note that
¹yº|S∞(εA

∞) = β⊕(y) = β∗(y) +
∑

a∈A(β⊕ ◦τa)(y) = ¹yº|S∞(ε) +
∑

a∈A¹yº|S∞(aA∞).
If it is known that for all y ∈ Y , ¹yº|S∞(wA∞) = ¹yº|S∞(w) +

∑

a∈A¹yº|S∞(waA∞)
then for any b ∈ A we have ¹yº|S∞(bwA∞) = ¹τb(y)º|S∞(wA∞) = ¹τb(y)º|S∞(w) +∑

a∈A¹τb(y)º|S∞(waA∞) = ¹yº|S∞(bw) +
∑

a∈A¹yº|S∞(bwaA∞). This proves the (ii)
of Theorem 5. We denote by ¹−º the extension of ¹−º|S∞ . We postpone the proof of
the measurability of ¹−º; what is left is the commutation of the coalgebra diagram. The
first line of the definition of ¹−º|S∞ gives directly that β⊕ = ¹−º(A∞) and β∗ = ¹−º(ε).
Let a ∈ A. For any y ∈ Y , according to the second line of the definition of ¹−º|S∞ , the
measures ¹τa(y)º and ¹yºa coincide on S∞, hence are equal according to Theorem 5,
so ¹−º ◦τa = ¹−ºa. This achieves the proof that the diagram commutes.

Measurability. It is not immediate to notice why ¹−º : Y → DA∞ is a measurable
function. What has to be shown according to Lemma 2 is that for any S ∈ ΣA∞ , ¹−º(S)
is measurable. This is true when S ∈ S∞. Indeed, ¹−º(;) is the zero function, which
is measurable. For the rest we proceed by induction. Obviously ¹−º(εA∞) = β⊕ and
¹−º(ε) = β∗ are measurable because β is. Furthermore, ¹−º(awA∞) = ¹−ºa(wA∞) =
¹−º(wA∞) ◦ τa and ¹−º(aw) = ¹−ºa(w) = ¹−º(w) ◦ τa are measurable by induction
hypothesis and composition.

Let Z be a set. A set P ⊆ P (Z) is a π-system if it is non-empty and closed under fi-
nite intersections. A set D ⊆ P (Z) is a λ-system if it contains Z and is closed under
difference (if A, B ∈ D and A ⊆ B then B \ A ∈ D) and countable increasing union. A
widely known theorem of measure theory, namely the π− λ theorem (see [1], lemma
4.11) is that given P a π-system, D a λ-system such that P ⊆ D, then σZ(P) ⊆ D.

Take Z = A∞, P = S∞ and D = {S ∈ ΣA∞ | ¹−º(S) is measurable}. It is easy to see that
S∞ is a π-system. Moreover, D is a λ-system. Indeed, A∞ ∈ D (see above), if (Sn)n∈N
is an increasing sequence of sets in D, then ¹−º(S1 \ S0) = ¹−º(S1)− ¹−º(S0) is mea-
surable as a difference of measurable functions and ¹−º

�⋃

n∈N Sn

�

= limn→∞¹−º(Sn)
is measurable as a pointwise limit of measurable functions. Finally, given the preceding
paragraph, we have S∞ ⊆ D. The π−λ theorem therefore yields ΣA∞ ⊆ D.

An interpretation of the last proposition is that, in the subcategory of F -coalgebras that
satisfy the equation (ii), the final object is Π. If Proposition 34 holds, then note that
ϕΠ ◦ ¹−º is a coalgebra morphism from β into the final coalgebra ω. Hence by finality
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ϕΠ ◦ ¹−º = ϕβ . This is kind of a soundness property for our factorization. Soundness
and completeness together yield the following proposition, which is exactly the same as
in section 2.

Proposition 35. Let β : Y → FY be an F-coalgebra for which Proposition 34 holds. Then
for any y, z ∈ Y , ¹yº= ¹zº iff ϕβ (y) = ϕβ (z).

Proof. By Lemma 33, ¹yº = ¹zº iff (ϕΠ ◦ ¹−º)(y) = (ϕΠ ◦ ¹−º)(z) iff ϕβ (y) = ϕβ (z).

Back to α : X → PLX we check that Proposition 34 holds for α̃# = 〈α̃#
⊕, α̃#

∗ , a 7→ τa〉.
Note that because α(x)(LX ) = 1, we have for all m ∈ DX that m(X ) =

∫

X 1dm =
∫

X α(x)(LX )dm= α̃#
⊕(m). This justifies the last equality:

α̃#
⊕(m) =

∫

X

α(−)(LX )dm=

∫

X

�

α(−)(1) +
∑

a∈A

α(−)({a} × X )

�

dm

=

∫

X

α(−)(1)dm+
∑

a∈A

∫

X

α(−)({a} × X )dm

= α̃#
∗ (m) +

∑

a∈A

τa(m)(X ) = α̃
#
∗ (m) +

∑

a∈A

(α̃#
⊕ ◦τa)(m)

Conclusion. To any α : X → PLX can be given a canonical trace semantics via a deter-
minization process. This is a function ¹−º : DX → DA∞.

3.2 Related results

Link with Kerstan’s trace semantics

In [11], given an α : X → PLX , the trace semantics tr : X → PA∞ is defined by

tr(x)(εA∞) = α(x)(LX ) (= 1) tr(ε) = α(x)(1)

tr(x)(awA∞) =

∫

X

tr(−)(wA∞)d ta(x) tr(x)(aw) =

∫

X

tr(−)(w)d ta(x)

We will hereby prove that this sematics fits with ours, in the sense that the following
diagram commutes.

X PA∞

DX DA∞

tr

ηX ιA∞

¹−º

Define ¹¹¹−ººº= ¹−º ◦ηX as in the discrete case.

Lemma 36. For any m ∈ DX and any S ∈ S∞, ¹mº(S) =
∫

X ¹
¹¹−ººº(S)dm.
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Proof. In this proof there may be times when
∫

X f dm is denoted by
∫

x∈X f (x)m(d x).
First, show that for any measurable function f : X → I,

∫

X

f dτa(m) =

∫

x∈X

�∫

X

f d ta(x)

�

m(d x)

Using a density argument, first look at the case f = 1B for some B ∈ ΣX . The equal-
ity becomes τa(m)(B) =

∫

X ta(−)(B)dm, which is true by definition of τa. Further-
more, the property is clearly preserved by linear combination, so it is true for simple
functions. Now let ( fn)n∈N be an increasing sequence of simple functions with point-
wise limit f . Then

∫

X f d ta(m) = lim
∫

X fnd ta(m) = lim
∫

x∈X

�∫

X fnd ta(x)
�

m(d x) =
∫

x∈X

�∫

X lim fnd ta(x)
�

m(d x) =
∫

x∈X

�∫

X f d ta(x)
�

m(d x). The exchanges between limit
and integral are justified by the monotone convergence theorem.

Note further that ¹¹¹xººº(εA∞) = (α̃#
⊕ ◦ ηX )(x) = α̃⊕(x) = α(x)(LX ) and in the same

way ¹¹¹xººº(ε) = α(x)(1). Now let us prove the lemma by induction, for all m ∈ DX . First

¹mº(εA∞) = α̃#
⊕(m) =

∫

X

α(−)(LX )dm=

∫

X

¹¹¹−ººº(εA∞)dm

¹mº(ε) = α̃#
∗ (m) =

∫

X

α(−)(1)dm=

∫

X

¹¹¹−ººº(ε)dm

Assume the result is true for wA∞ and w. Take � ∈ {{ε}, A∞}.

¹mº(aw�) = ¹τa(m)º(w�) =
∫

X

¹¹¹−ººº(w�)dτa(m) (induction hypothesis)

=

∫

x∈X

�∫

X

¹¹¹−ººº(w�)d ta(x)

�

m(d x) (preliminary lemma)

=

∫

x∈X

¹τa(ηX (x))º(w�)m(d x) (definition of τa)

=

∫

X

¹¹¹−ººº(aw�)dm

Using this last lemma and that τa ◦ηX = ta, we have for any x ∈ X :

¹¹¹xººº(εA∞) = α(x)(LX )
¹¹¹xººº(ε) = α(x)(1)

¹¹¹xººº(awA∞) = ¹(τa ◦ηX )(x)º(wA∞) = ¹ta(x)º(wA∞) =

∫

X

¹¹¹−ººº(wA∞)d ta(x)

¹¹¹xººº(aw) = ¹(τa ◦ηX )(x)º(w) = ¹ta(x)º(w) =

∫

X

¹¹¹−ººº(w)d ta(x)

Thus, for any x ∈ X , ¹¹¹− ººº(x) and (ιA∞ ◦ tr)(x) are measures in DA∞ that coincide on
S∞. Because of Theorem 5, they are equal. Consequently the above diagram commutes,
which mean that the trace semantics we get via determinization and Eilenberg-Moore
algebras is the same as the Kleisli trace semantics of [11].

Proposition 37. The two trace semantics denoted by ¹¹¹−ººº and tr coincide.
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Link with the discrete case

In the event that α : X → PLX can be seen as a discrete system, i.e., for all x ∈ X , α(x)
is a linear sum of Dirac distributions, then the general semantics coincide with those
obtained in section 2.

Link with a more general correspondence

In [10], an abstract link is established between Kleisli trace semantics and determinized
trace semantics. It turns out that when both constructions are possible, and under some
compatibility conditions, the two trace semantics can be compared. In the setting of
our paper, it is proved above that indeed the trace semantics are the same. But we do
not know if the general result can be directly applied here for at least one reason: the
correspondence stated in [10] uses only one monad for both constructions. This allows
to relate both constructions in an easier fashion, via for example the extension natural
transformation e : DL⇒ FD. The moment we violate this is when we use the injection
natural transformation ι : P⇒ D. It seems actually impossible to choose to use only P or
D. The Giry monad is necessary because we do need the sums-to-1 condition to ensure
that Theorem 34 is satisfied. The sub-Giry monad is necessary because the components
of α̃ do not sum to 1. One may argue that P(A× X + 1) ' D(A× X ) (via the function
m 7→ m|ΣA⊗ΣX

), but this does not solve this issue. Indeed, Kleisli semantics of PTS of the
form X → D(A× X ) is trivial (see Theorem 3.33 in [11]).

Our work is largely done by hand because there are no general enough results about
systems of the shape X → P(A× X + 1). Either this is because such systems are a really
specific case and the existence of measure semantics is a little wonder, or this may be
because we were not able to see a more stylish way to proceed.

Conclusion

The recent formalization of automata through coalgebras allows to take a step back
and understand why a trace semantics is the good one in a certain sense. In addition,
it provides some tools such as bisimulation (up-to). We took as a starting point the
trace semantics for continuous PTS given by Kerstan in [11] and redefined it using a
determinization process in both discrete and continuous cases. It seems that a Kleisli
approach is inadequate for taking into account infinite traces in Sets, whereas our de-
terminization approach can do this using a small and very localized amount of measure
theory. For discrete PTS, bisimulations up-to turned out to be a fertile ground for finding
an algorithm that checks trace equivalence.

In section 3 the algorithmic considerations of section 2 could be adapted, but this would
be irrelevant. Indeed, such algorithms for continuous systems will not be computable as
they involve infinite sums or integrals, in contrast to HKC∞ which only needs some ma-
trix multiplications. Moreover, for any interesting general system, i.e., any system that
can not be reducted to the discrete case, such algorithms will not terminate. The only
case for which they would be useful is to prove that a given general system is equivalent
to a given discrete system.

34



One could have worked with only one output in the machine functor, as this is usu-
ally the case. For example, if the total mass output is dropped, its information is not lost
forever as we can compute it by summing the mass on every word using the termina-
tion output and the transitions. However, our way of doing is shaped to highlight the
step-by-step motion of the automaton and the fact that each state carries two equally
important pieces of information. This makes the coalgebraic treatment via the machine
functor sound in regards to bisimulation. Another reason is that using two outputs lead
"easily" to the statement about the existence of a pseudo-final morphism into DA∞.
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