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Abstract. In the context of mathematical morphology based on struc-
turing elements to define erosion and dilation, this paper generalizes
the notion of a structuring element to a new setting called structuring
neighborhood systems. While a structuring element is often defined as a
subset of the space, a structuring neighborhood is a subset of the subsets
of the space. This yields an extended definition of erosion; dilation can
be obtained as well by a duality principle. With respect to the classical
framework, this extension is sound in many ways. It is also strictly more
expressive, for any structuring element can be represented as a struc-
turing neighborhood but the converse is not true. A direct application
of this framework is to generalize modal morpho-logic to a topological
setting.
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1 Introduction

The motivation of this paper is to apply mathematical morphology in logic
(morpho-logic), in particular for spatial reasoning. Morpho-logic was initially in-
troduced for propositional logic [5], and proved useful to model knowledge, beliefs
or preferences, and to model classical reasoning methods such as revision, fusion
or abduction [6, 7]. Extensions to modal logic [8] and first-order logic [10] were
then proposed. The framework of satisfaction systems and stratified institutions
was then proposed as a more general setting encompassing many logics [1–3]. In
modal logic, morphological operators can be seen as modalities, with generally
strong properties. However, the modalities of topological modal logic cannot be
obtained when considering the usual definition of structuring element as a set or
a binary relation; furthermore, the properties of these modalities are not those
of erosion and dilation but closer to those of opening and closing, because of the
double quantification ∀/∃ in their definition. The starting point of this paper is
to try to see these modalities as weaker forms of erosion and dilation, derived
from a lax notion of structuring element.

Let X denote a set and P(X) its powerset. The context we consider is the one
of deterministic mathematical morphology, with dilations and erosions defined
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on P(X) from structuring elements. The main idea of this paper is to consider a
structuring element not as an element of P(X), or a function from X into P(X),
but as a function taking values in P(P(X)). We call it structuring neighborhood
system, in accordance with the topological flavor of the considered setting. The
aim of this paper is then to study the structure of the set of such structuring
neighborhoods, and to establish their properties. In particular we show that
many properties are satisfied, but some, mostly related to adjunctions, may be
lost.

The paper is organized as follows. In Section 2, we recall some results on
dilations and erosions defined using classical structuring elements. In Section 3
we introduce the proposed definition of structuring neighborhood systems. Their
set can be endowed with a lattice structure and with a monoid structure, as in
the classical setting [11, 15]. Properties are then derived. We also introduce a
weaker form of erosion, which is proved to occur exactly when the structuring
neighborhood system is a filter (in the sense of logic). Finally in Section 4 we
show that the proposed framework leads to good results on topological modal
logic, thus achieving our initial aim.

2 Structure on Structuring Elements

2.1 Mathematical Morphology Based on Structuring Elements

In the context of deterministic mathematical morphology, a class of basic oper-
ators is often defined based on the notion of structuring element (see e.g. [4, 12,
16]). A general definition of a structuring element is the following.

Definition 1 (Structuring element). A structuring element is a function
b : X → P(X).

Example 1 (Translations in Rn). Let B be a subset of Rn and b : Rn → P(Rn)
be defined by b(x) = Bx (the translated of B at position x). This is a well-known
structuring element in translation invariant morphological image processing.

The two following examples come from the morphological study of logic, also
called morpho-logic. See [8] for the modal case and [3] for a more general account
of morpho-logic. A wider class of logical systems will be presented in Section 4.

Example 2 (Modal morpho-logic). Let 〈W,R〉 be a Kripke frame, i.e. W is a set
of worlds, and R ⊆W ×W is a binary relation often called accessibility relation.
One can define a structuring element b : W → P(W ) by b(w) = {w′ ∈ W |
(w,w′) ∈ R}, i.e. the set of worlds accessible from w.

Example 3 (First-order morpho-logic). Let Var = {x, y, z, ...} be a set of vari-
ables and M be a set. A function f : Var → M is called a variable affectation.
For any x ∈ Var, one can define the x-structuring element bx : MVar → P(MVar)
by b(f) = {g ∈MVar | ∀y 6= x, g(y) = f(y)}.

The two following simple examples will be useful in what follows.
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Example 4 (Singleton). The singleton structuring element sgt : X → P(X) is
defined by sgt(x) = {x}.

Example 5 (Symmetric). Let b : X → P(X) be a structuring element. Its sym-
metric structuring element b† is defined by b†(x) = {y ∈ X | x ∈ b(y)}.

Let b : X → P(X) be a structuring element. Erosion ε[b] and dilation δ[b]
are two operators P(X)→ P(X) defined for all U ∈ P(X) by

ε[b](U) = {x ∈ X | b(x) ⊆ U} (1)

δ[b](U) = {x ∈ X | b(x) ∩ U 6= ∅} (2)

Remark 1. Usually, dilation is rather defined using the symmetric structuring
element by δ[b](U) = {x ∈ X | b†(x) ∩ U 6= ∅}. This yields good properties,
especially adjunction [11]. Report to Remark 2 to understand the choice of not
using b†.

Let StEl(X) = P(X)X denote the set of all structuring elements on X, and
let Op(X) = P(X)P(X) be the set of all operators on P(X), which contains all
erosions and dilations.

2.2 Lattice Structure

One can define a partial order on StEl(X) using pointwise inclusion: b ≤ c iff
for all x ∈ X, b(x) ⊆ c(x). This order endows StEl(X) with a complete lattice
structure, where for all (bi)i∈I ∈ StEl(X)I ,(∧

i∈I
bi

)
(x) =

⋂
i∈I

bi(x) (3)

(∨
i∈I

bi

)
(x) =

⋃
i∈I

bi(x) (4)

The greatest element is the full structuring element, defined by ful(x) = X,
and the least element is the empty structuring element, defined by emp(x) = ∅.
There is also a similar complete lattice structure on Op(X).

2.3 Monoid Structure

One can define an internal composition law ? on StEl(X). Let b, c : X → P(X)
be structuring elements. Let (b ? c)(x) = {z ∈ X | ∃y ∈ b(x), z ∈ c(y)}. The
operation ? is associative, with neutral element sgt. This turns (StEl(X), ?, sgt)
into a monoid. There is also a monoid structure (Op(X), ◦, id) where ◦ is the
usual composition of functions and id(U) = U for all U ∈ P(X). Note that
ε[sgt] = δ[sgt] = id.

We will need the following result in the next section.
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Proposition 1. For any b, c ∈ StEl(X), one has, for all x ∈ X,U ∈ P(X),
(b ? c)(x) ⊆ U iff b(x) ⊆ ε[c](U).

Proof. First note by unfolding the definitions that (b ? c)(x) = δ[c†](b(x)). The
wanted property then becomes δ[c†](b(x)) ⊆ U ⇐⇒ b(x) ⊆ ε[c](U). This is
true, by the standard result of adjunction between ε[c] and δ[c†]. ut

2.4 Usual Properties

Table 1 contains a review of classical properties of erosion and dilation that will
be generalized in the following section. We also give new interpretations of some
of these properties with respect to the lattice and monoid structures of StEl(X)
and Op(X).

Table 1. Properties of classical erosion and dilation

Usual name Statement Interpretation

Duality ε[b](X \ U) = X \ δ[b](U) /
Monotonicity U ⊆ V ⇒ ε[b](U) ⊆ ε[b](V ) ε[b] isotone

U ⊆ V ⇒ δ[b](U) ⊆ δ[b](V ) δ[b] isotone
b ≤ c⇒ ε[c](U) ⊆ ε[b](U) ε[−] antitone
b ≤ c⇒ δ[b](U) ⊆ δ[c](U) δ[−] isotone

Anti-extensivity sgt ≤ b⇔ ε[b](U) ⊆ U ε[−] antitone
Extensivity sgt ≤ b⇔ U ⊆ δ[b](U) δ[−] isotone

Preservation of X ε[b](X) = X ε[b] erosion
Preservation of ∅ δ[b](∅) = ∅ δ[b] dilation

Commutation ε[b](
⋂
i∈I Ui) =

⋂
i∈I ε[b](Ui) ε[b] erosion

with inf ε[b](U ∩ V ) = ε[b](U) ∩ ε[b](V ) /
Commutation δ[b](

⋃
i∈I Ui) =

⋃
i∈I δ[b](Ui) δ[b] dilation

with sup δ[b](U ∪ V ) = δ[b](U) ∪ δ[b](V ) /
Associativity ε[b ? c] = ε[b] ◦ ε[c] ε[−] monoid homomorphism

of dilation δ[b ? c] = δ[b] ◦ δ[c] δ[−] monoid homomorphism

Adjunction U ⊆ ε[b](V )⇔ δ[b†](U) ⊆ V Galois connection

3 Structuring Neighborhoods

3.1 Introducing Neighborhoods Systems

In this section, we will generalize all notions of Section 2 using a lax notion
of structuring element, called structuring neighborhood system, or structuring
neighborhood for short.1

Definition 2 (Structuring neighborhood). A structuring neighborhood is
a function b : X → P(P(X)).

1 While b(x) is often considered as a neighborhood of x according to a given topology
on X, here our notion of neighborhood system refers to a set of subsets of X.
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Example 6 (Topology). Assume that X is endowed with a topology τ . The asso-
ciated structuring neighborhood is b(x) = {U ∈ P(X) | ∃O ∈ τ, x ∈ O and O ⊆
U} (the set of topological neighborhoods of x).

Definition 3 (From element to neighborhood). Let b : X → P(X) be a
structuring element in the sense of the previous section. Then one can define a
structuring neighborhood b : X → P(P(X)) by b(x) = {U ∈ P(X) | b(x) ⊆ U}
(the set of all supersets of b(x)).

Example 7 (Singleton). The structuring element sgt becomes the structuring
neighborhood sgt, which is given explicitly by sgt(x) = {U ∈ P(X) | x ∈ U}.

Let b : X → P(P(X)) be a structuring neighborhood.

Definition 4. Define the operator ε[b] : P(X)→ P(X) by

ε[b](U) = {x ∈ X | U ∈ b(x)} (5)

Note that for the moment, nothing guarantees that the operator ε[b] is an
erosion. One can also define an other operator δ[b] using a duality principle,
namely δ[b](U) = X \ ε[b](X \ U). This leads to

δ[b](U) = {x ∈ X | X \ U /∈ b(x)} (6)

Remark 2. When it comes to define δ[b], we could not have used a symmetric
structuring neighborhood. Indeed, there is no obvious definition of such an ob-
ject. This is also why, for consistency purposes, no symmetric was involved in
our definition of dilation in Section 2. As the symmetric structuring element is
a crucial component to get the adjunction-related properties, structuring neigh-
borhood will lack these results.

Let StNb(X) = P(P(X))X denote the set of all structuring neighborhoods
on X. Definition 3 induces a map − : StEl(X) → StNb(X) which will be called
the plunge map because it is injective. The following proposition shows that this
extension of erosion and dilation is sound with respect to the classical case:

Proposition 2. For any b ∈ StEl(X), ε[b] = ε[b] and δ[b] = δ[b].

Proof. By definition, x ∈ ε[b](U) ⇔ U ∈ b(x) ⇔ b(x) ⊆ U ⇔ x ∈ ε[b](U). For
the other one, use duality: δ[b](U) = X \ε[b](X \U) = X \ε[b](X \U) = δ[b](U).

ut

Remark 3. This yields immediately ε[sgt] = ε[sgt] = id and δ[sgt] = δ[sgt] = id.

3.2 Lattice Structure

One can define a partial order on StNb(X) using pointwise reversed inclusion.
More precisely, for any b, c ∈ StNb(X), define b � c if and only if for all x ∈ X,
b(x) ⊇ c(x). The reason for which the inclusion is reversed in the definition of �
lies in the following result.
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Proposition 3. For any b, c ∈ StEl(X), b ≤ c if and only if b � c.

Proof. Assume b ≤ c, take x ∈ X, U ∈ P(X), and assume that U ∈ c(x) i.e.
c(x) ⊆ U . As b ≤ c, we have b(x) ⊆ c(x), hence b(x) ⊆ U i.e. U ∈ b(x). This
completes the proof that b � c. For the other implication, assume b � c. Let
x ∈ X and show that b(x) ⊆ c(x). As c(x) ∈ c(x) and c(x) ⊆ b(x), one has
c(x) ∈ b(x), so by definition of b this yields b(x) ⊆ c(x). Hence, b ≤ c. ut

Then, the set StNb(X) has a complete lattice structure, with, for any family
(bi)i∈I in StNb(X): (∧

i∈I
bi

)
(x) =

⋃
i∈I

bi(x) (7)

(∨
i∈I

bi

)
(x) =

⋂
i∈I

bi(x) (8)

The empty structuring element emp gives rise to a structuring neighborhood
emp, defined by emp(x) = P(X), which turns out to be least element of this
lattice. The greatest structuring neighborhood is called the void and is given by
void(x) = ∅. It is not the image of the full structuring element by the plunge
function; indeed, ful(x) = {X}. Actually, void is the image of no structuring
element by the plunge map, because for any structuring element b, b(x) ∈ b(x);
henceforth, the plunge map is not surjective.

3.3 Monoid Structure

One can define an internal composition law in StNb(X). Given b, c ∈ StNb(X),
let (b ? c)(x) = {U ∈ P(X) | ε[c](U) ∈ b(x)}. The symbol ? is used for both
the composition in StEl(X) and the one in StNb(X) because its meaning can be
determined unambiguously from the type of the maps b and c.

Proposition 4. Let b, c ∈ StNb(X) be structuring neighborhoods. Let ε and δ
be the two operators introduced in Definition 4. Then, one has ε[b?c] = ε[b]◦ε[c]
and δ[b ? c] = δ[b] ◦ δ[c].

Proof. Concerning the first operator, x ∈ ε[b ? c](U) ⇐⇒ U ∈ (b ? c)(x) ⇐⇒
ε[c](U) ∈ b(x)⇐⇒ x ∈ ε[b] (ε[c](U)). The case of the other operator is obtained
by duality. ut

Proposition 5. The operation ? is associative and sgt is its neutral element.

Proof. The element sgt is neutral because U ∈ (b ? sgt)(x) ⇐⇒ ε[sgt](U) ∈
b(x) ⇐⇒ U ∈ b(x), and U ∈ (sgt ? b)(x) ⇐⇒ ε[b](U) ∈ sgt(x) ⇐⇒ x ∈
ε[b](U)⇐⇒ U ∈ b(x). For associativity, use Proposition 4:

U ∈ (b ? (c ? d))(x) ⇐⇒ ε[c ? d](U) ∈ b(x) (9)

⇐⇒ (ε[c] ◦ ε[d])(U) ∈ b(x) (10)

⇐⇒ ε[d](U) ∈ (b ? c)(x) (11)

⇐⇒ U ∈ ((b ? c) ? d)(x) (12)



From Structuring Elements to Structuring Neighborhood Systems 7

ut

Proposition 5 yields that (StNb(X), ?, sgt) is a monoid. According to Propo-
sition 4 and Remark 3, the functions ε[−], δ[−] : StNb(X) → Op(X) are then
monoid homomorphisms. This is analogous to the structuring element case,
where ε[−], δ[−] : StEl(X) → Op(X) are monoid homomorphisms. We have
the following additional result.

Proposition 6. The plunge map − : StEl(X) → StNb(X) is a monoid homo-
morphism.

Proof. It does obviously preserve the neutral element, for sgt is neutral in StEl(X)
and sgt is neutral in StNb(X). Let b, c ∈ StEl(X). What remains to show is that
b ? c = b ? c. Computations result in

U ∈ (b ? c)(x) ⇐⇒ ε[c](U) ∈ b(x) (13)

⇐⇒ ε[c](U) ∈ b(x) (14)

⇐⇒ b(x) ⊆ ε[c](U) (15)

⇐⇒ (b ? c)(x) ⊆ U (16)

⇐⇒ U ∈ (b ? c)(x) (17)

where we used Proposition 1 for the equivalence between Equations 15 and 16.
ut

Proposition 2 and all monoid homomorphisms that have been discussed so
far can be summed up in the commutative diagram of Figure 1.

(StEl(X), ?, sgt) (StNb(X), ?, sgt)

(Op(X), ◦, id)

(StEl(X), ?, sgt) (StNb(X), ?, sgt)

−

ε[−] ε[−]

−

δ[−] δ[−]

Fig. 1. Overview of the monoid-preserving structure of morphological operators

3.4 Usual Properties: Towards Filters

Many properties of classical erosion and dilation can be found back at the price
of some necessary and sufficient conditions on the structuring neighborhood.
Table 2 sums them up.
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Definition 5 (Upper family). Let b ∈ StNb(X). It is an upper family if for
all x in X, all V in P(X) and all U in b(x), V ⊇ U implies V ∈ b(x).

Definition 6 (Preservation). Let b ∈ StNb(X). It preserves intersections if
for all x ∈ X and all (Ui)i∈I ∈ P(X),

⋂
i∈I Ui ∈ b(x) ⇐⇒ ∀i ∈ I, Ui ∈ b(x).

It preserves finite intersections if for all x ∈ X and all U, V ∈ P(X), U ∩ V ∈
b(x) ⇐⇒ U, V ∈ b(x).

Table 2. Properties of ε[b] and δ[b] with respect to b

Usual name Statement Equivalent condition on b

Duality ε[b](X \ U) = X \ δ[b](U) True
Monotonicity U ⊆ V ⇒ ε[b](U) ⊆ ε[b](V ) b upper family

U ⊆ V ⇒ δ[b](U) ⊆ δ[b](V ) b upper family
b � c⇒ ε[c](U) ⊆ ε[b](U) True

b � c⇒ δ[b](U) ⊆ δ[c](U) True
Anti-extensivity sgt � b⇔ ε[b](U) ⊆ U True

Extensivity sgt � b⇔ U ⊆ δ[b](U) True

Preservation of X ε[b](X) = X b � ful

Preservation of ∅ δ[b](∅) = ∅ b � ful
Commutation ε[b](

⋂
i∈I Ui) =

⋂
i∈I ε[b](Ui) b preserves ∩

with inf ε[b](U ∩ V ) = ε[b](U) ∩ ε[b](V ) b preserves finite ∩
Commutation δ[b](

⋃
i∈I Ui) =

⋃
i∈I δ[b](Ui) b preserves ∩

with sup δ[b](U ∪ V ) = δ[b](U) ∪ δ[b](V ) b preserves finite ∩
Associativity ε[b ? c] = ε[b] ◦ ε[c] True

of dilation δ[b ? c] = δ[b] ◦ δ[c] True

Preservation of intersections does confer ε[b] the name of erosion, but this is
a very strong requirement. Following the path of Example 6 (topological neigh-
borhoods are preserved by finite intersections, but not by all intersections), it
would be more reasonable to only ask b to preserve finite intersections. This is
why we define hereafter a notion that is weaker than erosion.

Definition 7 (Weak erosion). Let E ∈ Op(X). It is called a weak erosion if
E(X) = X and for all U, V ∈ P(X), E(U ∩ V ) = E(U) ∩ E(V ).

Proposition 7. If b preserves finite intersections, then b is an upper family.

Proof. Assume that b preserves finite intersections. Let U, V ∈ P(X) such that
V ⊇ U and U ∈ b(x). Then U ∩ V = U ∈ b(x). By hypothesis, this yields
V ∈ b(x), so that b is an upper family. ut

We are naturally led to a mathematical construction that is very important
in topology and logic: filters.

Definition 8 (Filter). A filter on X is an element f of P(P(X)) such that
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1. X ∈ f,

2. U, V ∈ f⇒ U ∩ V ∈ f,

3. V ⊇ U,U ∈ f⇒ V ∈ f.

Proposition 8. The operator ε[b] is a weak erosion if, and only if, the set b(x)
is a filter for every x ∈ X.

Proof. Assume that ε[b] is a weak erosion. As ε[b](X) = X, one has b � ful
so X ∈ b(x) for all x ∈ X, and then Condition (1.) for a filter is true. As
ε[b] distributes over finite intersections, b preserves finite intersections: this gives
both Condition (2.) and (according to Proposition 7) the upper family property,
i.e. Condition (3.) is true. Conversely, assume that for every x ∈ X, b(x) is a
filter. Then X ∈ b(x) so ε[b](X) = X. Furthermore, Condition (2.) of filters
implies that ε[b](U ∩ V ) ⊇ ε[b](U) ∩ ε[b](V ); the other inclusion comes directly
from Condition (3.). ut

Remark 4. A variant of Proposition 8 is that ε[b] is an erosion if and only if
the set b(x) is an Alexandrov filter for every x ∈ X, i.e. b(x) is a filter that
is stable under arbitrary intersections. It turns out that in this case, defining
∩b(x) =

⋂
U∈b(x) U yields ε[b] = ε[∩b]. In other words, any erosion obtained

via a structuring neighborhood can already be obtained via a well-chosen struc-
turing element. Asking only for weak erosions allows us to strictly enhance the
expressiveness of this framework (see Example 8).

Example 8 (Interior in R). Take X = R and τ be its usual topology. As it does
not commute with infinite intersections, the interior operator is not an erosion.
However, it is a weak erosion and can be modeled in our framework using the
structuring element given in Example 6.

4 Application: Morpho-Logic

The fact that erosions commute with infinite infima is particularly important
in mathematical morphology. However, some interesting applications are still
within reach of weak erosions, which only commute with finite infima. The most
noticeable of them is maybe logic. Indeed, in logic, the infimum of two formulas
is given by their conjunction. As formulas are built through an inductive process
in a finite number of steps, no infinite conjunctions will ever arise. Weak erosions
obtained from structuring neighborhoods turn out to be useful to model logical
phenomena that were previously beyond the scope of mathematical morphology.
In this section we will discuss how our framework handles neighborhood logic,
which is based on structuring neighborhoods. For the sake of succintness, some-
times only erosion will be addressed, but all dual expected results also hold for
dilation.
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4.1 Neighborhood Modal Logic

The logical study of neighborhood structures has ancient origins (see e.g. [9]). A
pretty exhaustive account is given in the recent book of Pacuit [13]. Neighbor-
hood models are a generalization of Kripke models (see Example 2) towards a
second-order semantics of modalities.

Syntax Let P be a countable set whose elements will be called propositional
variables and denoted by letters p, q, r... The set F of formulas of modal logic is
defined by the following grammar:

ϕ,ψ ::= p | ¬ϕ | ϕ ∧ ψ | �iϕ (18)

where i runs through some index set I and p runs through P . There are thereby
|I| different modal operators �i. Other connectives like ∨, →, ♦i are all ex-
pressible from those above: ϕ ∨ ψ = ¬(¬ϕ ∧ ¬ψ), ϕ → ψ = ¬(ϕ ∧ ¬ψ) and
♦iϕ = ¬�i¬ϕ. Given an arbitrary p ∈ P , define also the logical constants
> = p ∨ ¬p and ⊥ = p ∧ ¬p.

Semantics A model is a triple 〈W, (Ni)i∈I , V 〉 where W is a set whose elements
are called worlds or states, Ni ∈ StNb(W ) is a structuring neighborhood and
V : P → P(W ) is a function called the valuation. The semantics of formulas
with respect to a model 〈W,N, V 〉 consists of a relation |= included in W × F .
The assertion w |= ϕ intuitively means that the formula ϕ is true at state w. Its
negation is denoted w 6|= ϕ, i.e. the formulat ϕ is not true at w. The relation |=
is defined by structural induction on formulas as follows:

– w |= p if and only if w ∈ V (p),
– w |= ¬ϕ if and only if w 6|= ϕ,
– w |= ϕ ∧ ψ if and only if w |= ϕ and w |= ψ,
– w |= �iϕ if and only if {w′ ∈W | w′ |= ϕ} ∈ Ni(w).

The set {w′ ∈ W | w′ |= ϕ} will also be denoted by JϕK. Note that the
definition of the satisfaction relation amounts to:

– JpK = V (p),
– J¬ϕK = W \ JϕK,
– Jϕ ∧ ψK = JϕK ∩ JψK,
– J�iϕK = ε[Ni](JϕK).

Define an equivalence relation ≡ on F by ϕ ≡ ψ iff JϕK = JψK. Table 2 then
gives rise to the logical rules listed in Table 3, where a model 〈W, (N,N ′, N ′′), V 〉
is fixed, with N ′′ = N?N ′. The modalities of N,N ′, N ′′ are denoted respectively
by �,�′,�′′, and also ♦,♦′,♦′′. Note that ϕ ≡ > means that ϕ is true at every
state; hence ϕ ≡ > will be simply abbreviated to ϕ in the left column of Table 2.

The case of classical modal logic was studied by Bloch [8]. It corresponds to
the case N = b where b is given in Example 2; also all properties on the left of
the above table are satisfied because ε[N ] = ε[b] = ε[b] is then an erosion.
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Table 3. Properties of logical systems with respect to N

Logical rule Equivalent condition on N

�¬ϕ ≡ ¬♦ϕ True
(ϕ→ ψ)→ (�ϕ→ �ψ) N upper family
(ϕ→ ψ)→ (♦ϕ→ ♦ψ) N upper family
N � N ′ ⇒ �′ϕ→ �ϕ True
N � N ′ ⇒ ♦ϕ→ ♦′ϕ True
sgt � N ⇔ �ϕ→ ϕ True
sgt � N ⇔ ϕ→ ♦ϕ True

�> ≡ > N � ful

♦⊥ ≡ ⊥ N � ful
�(ϕ ∧ ψ) ≡ �ϕ ∧�ψ N preserves finite ∩
♦(ϕ ∨ ψ) ≡ ♦ϕ ∨ ♦ψ N preserves finite ∩

�′′ϕ ≡ ��′ϕ True
♦′′ϕ ≡ ♦♦′ϕ True

4.2 Topological Modal Logic

A more specific case is the one of topological modal logic, where the space W is
endowed with a topology τ . The set J�ϕK (resp. J♦ϕK) is defined to be the topo-
logical interior (resp. closure) of JϕK with respect to τ . The question of whether
these modalities can be represented as a pair erosion/dilation was raised in [3].
By extending the notion of a structuring element, the framework developed in
this paper brings a positive answer to this issue. Indeed, the topological � oper-
ator can be obtained as ε[N ] using the structuring neighborhood of Example 6:

N(w) = {U ∈ P(W ) | ∃O ∈ τ, w ∈ O,O ⊆ U} (19)

It is a standard fact that the interior operator distributes over binary inter-
sections and that the interior of the whole set is itself, making this operator a
weak erosion. Consistently with Proposition 8, this reflects the other standard
fact that the set N(w) of topological neighborhoods is a filter for every w ∈W .

5 Conclusion

In this paper, we have shown that moving from P(X) to P(P(X)) to define struc-
turing neighborhoods leads to strong algebraic structures (lattice and monoid),
as well as to a large set of properties of dilations and erosions, at the price of
losing the adjunction property. The restriction to finite intersections resulted in
a weaker definition of erosion, equivalently asking the structuring neighborhood
to be a filter. This setting was then applied to morpho-logic, e.g. topological
modal logic. The logic inherits the properties of the morphological operators. A
potential application could then be spatial logics based on spatial relations, and
their use for image understanding.

For further extensions, for instance fuzzy systems, a coalgebraic treatment
might be relevant. Specifically, the theory of coalgebras has identified the concept
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underlying modal operators semantics as predicate liftings [14]. General erosion
could be defined by ε[b](U) = b−1(λ(U)) where the predicate lifting λ shapes
the type of the system; modal properties can then be studied at the level of λ.

Other perspectives include replacing P(X) or P(P(X)) by any complete
lattice, or further moving to a categorical setting by generalizing structuring
elements as coalgebras, dilation and erosion as adjoint functors, and so on.
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