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Abstract
Combining probabilistic choice and non-determinism is a
long standing problem in denotational semantics. From a
category theory perspective, the problem stems from the
absence of a distributive law of the powerset monad over
the distribution monad. In this paper we prove the existence
of a weak distributive law of the powerset monad over the
finite distribution monad. As a consequence, we retrieve the
well-known convex powerset monad as a weak lifting of
the powerset monad to the category of convex algebras. We
provide applications to the study of trace semantics and be-
havioral equivalences of systems with an interplay between
probability and non-determinism.

Keywords: weak distributive law, weak lifting, finite dis-
tribution monad, convex powerset monad, trace semantics,
behavioral equivalence, probability, non-determinism, prob-
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1 Introduction
The question of combining non-deterministic and probabilis-
tic choice has a long history in the semantics of programming
languages. In domain theory there has been a lot of work
in this direction by Tix, Kleimel and Plotkin [16, 29], Mis-
love [21] and Varacca and Winskel [30, 31]. More recently,
the same notorious difficulties appear in the coalgebraic se-
mantics of Segala systems [6, 7].

We follow the well established tradition of modeling vari-
ous effects using the category theoretic concept of a monad.
Non-determinism can be modeled via powerdomains [23],
or, more simplistically, if we restrain ourselves to working in
the category of sets and functions, by the powerset monad
P : Set → Set. For probabilistic choice, there is also a va-
riety of probabilistic powerdomains that have been consid-
ered [14, 15, 25]. Again, for the sake of simplicity, in this pa-
per we restrict our attention to the finite distribution monad
D : Set → Set mapping a set 𝑋 to the set of the finitely
supported distributions on 𝑋 .
Modular semantics for computational effects could be

achieved if the corresponding monads compose well. How-
ever, composing two monads is not straightforward, and in
general, additional conditions are required. For example, if
we consider twomonads (𝑇, [𝑇 , `𝑇 ) and (𝑆, [𝑆 , `𝑆 ) with their
respective units and multiplications, how can we define a

monad structure on the composed functor 𝑆𝑇 ? Defining the
multiplication `𝑆𝑇 : 𝑆𝑇𝑆𝑇 ⇒ 𝑆𝑇 from the multiplication of 𝑆
and that of 𝑇 would be rather easy should we have a way of
‘swapping’ 𝑆 and𝑇 , via a natural transformation𝛾 : 𝑇𝑆 ⇒ 𝑆𝑇 ,
for then we could define the desired multiplication as the

composite: 𝑆𝑇𝑆𝑇 𝑆𝑆𝑇𝑇 𝑆𝑇𝑇 𝑆𝑇 .
𝑆𝛾𝑇 `𝑆𝑇𝑇 𝑆`𝑇

This
approach to composing monads is due to the seminal work
of Jon Beck [2]. The natural transformation 𝛾 : 𝑇𝑆 ⇒ 𝑆𝑇

should satisfy four additional axioms, recalled below in Def-
inition 2.5, and is called a distributive law of the monad 𝑆

over the monad 𝑇 . The four additional axioms essentially
state that 𝛾 interacts well with the multiplications, respec-
tively with the units of the two monads. Beck showed that
distributive laws of the monad 𝑆 over the monad 𝑇 are in
one-to-one correspondence with liftings of 𝑆 to the category
of Eilenberg-Moore algebras for 𝑇 and with extensions of 𝑇
to the Kleisli category for the monad 𝑆 .
Unfortunately, as we know from Varacca’s thesis [30],

there is no distributive law of the monad P, modeling nonde-
terminism, over the monadD, modeling probabilistic choice.
The proof of this fact, attributed to Plotkin, is by contra-
diction and relies on building a counterexample by smartly
manipulating the naturality of the assumed law and the ax-
iom corresponding to the unit [D of the monad D.

More negative results have been proved since: In the same
spirit, Klin and Salamanca [17] showed that there is no dis-
tributive law of the powerset monad over itself, and that
furthermore, there is nomonad structure on the iterated pow-
erset functor. Zwart and Marsden [33] generalized Plotkin’s
example and provided a fine analysis of non-existence of
distributive laws of various monads.
Coming back to combining non-deterministic and prob-

abilistic effects, various way of circumventing the problem
have been proposed: Varacca [30] uses instead of D the
monad of indexed valuations and shows the existence of a
distributive law in this setting. A different approach, coming
from domain theory, is to define directly a powerset-like
monad on the category of Eilenberg-Moore algebras for the
monad D. The objects of this category are called convex
algebras in [27], or barycentric algebras in [16], and the anal-
ogous of the powerset monad is the convex powerset monad
P𝑐 mapping a convex algebra to the convex algebra of its
convex subsets. This monad was considered, for example
in [6]. In domain theory the analogous construction is called
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the power Kegelspitzen [16]. A composite monad P𝑐D of
convex sets of distributions was considered in [12, 20].
A question that arises naturally is whether the convex

powerset monadP𝑐 and the composite monadP𝑐D described
in [20] can be obtained in a systematic way. How far away
are we from having a distributive law DP ⇒ PD? Can we
at least obtain a natural transformation? If yes, which of the
four axioms from the definition of a distributive law does it
satisfy?

The first observation is that we have a canonical extension
of the functor D to the category Rel of sets and relations,
which is precisely the Kleisli category of the powerset monad.
This is due to a result of Barr which states that weak pullback
preserving functors can be extended to locally monotone
functors on Rel. Indeed, the functor D preserves weak pull-
backs, see [8, 22], hence it can be extended to Rel. We thus
obtain a canonical distributive law

𝛿 : DP ⇒ PD

of the monad P over the functor D. This already entails that
the natural transformation 𝛿 interacts well with the unit and
multiplication of the monad P. So which of the remaining
two axioms fail? We will see that the interaction with the
unit [D of D is problematic, but the diagram corresponding
to the interaction with the multiplication `D does commute.

Weaker notions of distributive laws have been studied by
Street [28] and Böhm [3]. One such notion – precisely the
one we need – involves dropping one of the unit axioms is
the centerpiece in the work of Garner [11]. He simply calls
this notion a weak distributive law and hereafter we adopt
his terminology. Garner proves that the powerset monad
P weakly distributes over the Stone-Čech compactification
monad 𝛽 . Just as in the case of distributive laws, weak dis-
tributive laws 𝛿 : 𝑇𝑆 ⇒ 𝑆𝑇 correspond to a suitable notion
of weak liftings of 𝑆 to the Eilenberg-Moore category of 𝑇 .
In the particular case of the weak distributive law 𝛽P ⇒ P𝛽

exhibited by Garner, the corresponding weak lifting of P to
the category of Eilenberg-Moore algebras for 𝛽 – which is
known to be the category of compact Hausdorff spaces – is
exactly the Vietoris monad.

A first contribution of our paper is the following theorem

Theorem 1.1. The natural transformation 𝛿 : DP ⇒ PD
is a weak distributive law of the powerset monad P over the
finite distribution monad D. The corresponding weak lifting
of P to the category of convex algebras is the convex powerset
monad P𝑐 .

The proof of this theorem relies on proving a certain prop-
erty of the multiplication of the monad D, namely that it is
a weakly cartesian natural transformation. We achieve this
using a well known result from mathematical optimization,
Farkas’ Lemma.

Furthermore, just as a distributive law 𝑇𝑆 ⇒ 𝑆𝑇 induces
a monad structure on the composite functor 𝑆𝑇 , a weak dis-
tributive law𝑇𝑆 ⇒ 𝑆𝑇 induces a composite monad 𝑆𝑇 whose
Eilenberg-Moore algebras are the algebras for the weak lift-
ing of 𝑆 . In our case, the composite monad is exactly the
monad P𝑐D of convex subsets of probability distributions,
considered in [12, 20].
The existence of a weak distributive law sheds new light

on the compositional aspect of combining non-deterministic
and probabilistic choice. There are several instances in the
literature where the absence of a distributive law between
the two monads is deplored. The second part of the paper is
devoted to such applications:
First, we revisit the results of [6] on behavioral equiva-

lences for probabilistic automata. In loc. cit. Bonchi et al. pro-
vide a coalgebraic account of obtaining from a probabilistic
automata a belief-state transformer, i.e., a labelled transi-
tion system whose states are probability distributions. Had a
distributive law DP ⇒ PD existed, this procedure would
have been yet another example of the so-called generalized
powerset construction [26]. In the absence of a distributive
law [6] redevelops the theory by hand and in particular con-
structs the monad P𝑐 directly on the category of convex
algebras – the Eilenberg-Moore category for D. In Section 5
we extend the generalized powerset construction of [26] to
the setting of weak distributive laws and, as a corollary, we
obtain a systematic way of turning a probabilistic automaton
into a belief-state transformer.

A second application concerns trace semantics of systems
combining probabilistic and non-deterministic features – as
studied in [7] – using tools akin to the generalized deter-
minization. The lack of a proper distributive law means that
the authors of [7] had to build from scratch an algebraic pre-
sentation for the algebras of the composite monad P𝑐D and
to mend the mechanism of the generalized determinization
accordingly. Applying the results of [3], we automatically ob-
tain the presentation of P𝑐D: its algebras can be alternatively
described as 𝛿-algebras, that is, sets carrying simultaneously
P- and D- algebraic structures related via an additional
distributivity axiom.

Synopsis. After recalling the necessary preliminaries on
weak distributive laws in Section 2, we exhibit the canonical
weak distributive law of the powerset monad over the finite
distribution monad in Section 3. The corresponding weak
lifting of the powerset monad is the convex powerset monad.
We compute this weak lifting and discuss a presentation for
its algebras in Section 4. In Section 5 we provide a coalgebraic
generalized powerset construction for weak distributive laws
and we apply it to non-deterministic probabilistic systems.
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2 Monads and Weak Distributive Laws
This section presents some of the preliminary notions needed
in the sequel. After recalling the monads of interest, the sec-
ond part of the section is dedicated to the framework of weak
distributive laws [3], adopting Garner’s terminology [11].

2.1 Monads
To fix the notation we recall the basic notions of monad,
Eilenberg-Moore algebras and the Kleisli category for a
monad, see [19].

Definition 2.1 (Monad). A monad T = (𝑇, [, `) consists of
a functor𝑇 : C → C along with two natural transformations,
the unit [ : 𝐼𝑑 ⇒ 𝑇 and the multiplication ` : 𝑇𝑇 ⇒ 𝑇 such
that the following diagrams commute:

𝑇 𝑇𝑇 𝑇𝑇𝑇 𝑇𝑇

𝑇𝑇 𝑇 𝑇𝑇 𝑇

[𝑇

𝑇[ `

`𝑇

𝑇 ` `

` `

An Eilenberg-Moore algebra (𝑋, 𝑎) for the monad T is a mor-
phism 𝑎 : 𝑇𝑋 → 𝑋 satisfying 𝑎◦`𝑋 = 𝑎◦𝑇𝑎 and 𝑎◦[𝑋 = id𝑋 .
A morphism between algebras (𝑋, 𝑎) and (𝑌,𝑏) is a mor-
phism 𝑓 : 𝑋 → 𝑌 so that 𝑓 ◦ 𝑎 = 𝑏 ◦ 𝑇 𝑓 . The category of
Eilenberg-Moore algebras for T is denoted by EM(T). The
Kleisli category of T, denoted by Kl(T) is isomorphic to the
category of free T-algebras and can be described as follows.
Its objects are the objects of C and a morphism 𝑋 ↛ 𝑌 in
Kl(T) is a morphism 𝑋 → T𝑌 in C.

We recall the definitions of the monads of interest in this
paper and describe their categories of Eilenberg-Moore alge-
bras.

Definition 2.2 (Powerset monad). The powerset monad, de-
noted by (P, [P , `P), consists of the functor P : Set → Set
which sends a set 𝑋 to the set P𝑋 of all subsets of 𝑋 and
a function 𝑓 : 𝑋 → 𝑌 to its direct image P 𝑓 : P𝑋 → P𝑌 ,
the unit [P

𝑋
: 𝑋 → P𝑋 given by [P

𝑋
(𝑥) = {𝑥} and the

multiplication `P
𝑋
: PP𝑋 → P𝑋 given by `P

𝑋
(A) = ⋃A.

An Eilenberg-Moore P-algebra 𝑎 : P𝑋 → 𝑋 can be seen
as a complete lattice with the operation 𝑎 describing either
the sup or the inf.

Given a function 𝑓 : 𝑋 → 𝑌 , define its graph 𝑓∗ : 𝑋 ×𝑌 →
{0, 1} by 𝑓∗ (𝑥,𝑦) = 1 if and only if 𝑦 = 𝑓 (𝑥).
Definition 2.3 (Finite distribution monad). The finite dis-
tribution monad (D, [D, `D) consists in the following data:

• The functor D : Set → Set which maps a set 𝑋 to the
set D𝑋 of all finitely supported probability distribu-
tions on 𝑋 , i.e.,

D𝑋 = {𝜑 : 𝑋 → [0, 1] : supp(𝜑) is finite and
∑
𝑥 ∈𝑋

𝜑 (𝑥) = 1} .

It sends a function 𝑓 : 𝑋 → 𝑌 to the function D 𝑓 :
D𝑋 → D𝑌 defined byD 𝑓 (𝜑) (𝑦) = ∑

𝑥 ∈𝑋 𝜑 (𝑥) 𝑓∗ (𝑥,𝑦).

• The unit [D
𝑋

: 𝑋 → D𝑋 sends an element 𝑥 ∈ 𝑋 to
the Dirac distribution [D

𝑋
(𝑥) (𝑦) = idX ∗ (𝑥,𝑦).

• The multiplication `D
𝑋

: DD𝑋 → D𝑋 is defined by
`D
𝑋
(Φ) (𝑥) = ∑

𝜑 ∈D𝑋 Φ(𝜑)𝜑 (𝑥).

The category of Eilenberg-Moore algebras for D is de-
noted by EM(D). An Eilenberg-MooreD-algebra𝑎 : D𝑋 →
𝑋 is called a convex algebra or a barycentric algebra, see for
example [6, 16, 27, 32]. There are various concrete presen-
tations by operations and equations of these algebras. We
recall here the one from [16, Definition 2.2]. A convex alge-
bra is a set 𝑋 equipped with a binary operation +𝑟 for each
real number 𝑟 ∈ [0, 1] satisfying the following equations

𝑎 +1 𝑏 = 𝑎

𝑎 +𝑟 𝑎 = 𝑎

𝑎 +𝑟 𝑏 = 𝑏 +1−𝑟 𝑎
(𝑎 +𝑝 𝑏) +𝑟 𝑐 = 𝑎 +𝑝𝑟 (𝑏 + 𝑟−𝑝𝑟

1−𝑝𝑟
𝑐) if 𝑝, 𝑟 ≠ 1

A morphism of convex algebras is an affine map, that is, a
function 𝑓 : 𝑋 → 𝑌 so that 𝑓 (𝑎+𝑟 𝑏) = 𝑓 (𝑎) +𝑟 𝑓 (𝑏). The fact
that convex algebras (𝑋, (+𝑟 )𝑟 ∈[0,1]) and their morphisms
are precisely the Eilenberg-Moore algebras for the finite
distribution monad is well-known, see e.g., [9, 32].

Given a convex algebra (𝑋, (+𝑟 )𝑟 ∈[0,1]), a convex subset of
𝑋 is a subalgebra of 𝑋 , that is, a subset 𝐴 ∈ 𝑋 so that for all
𝑟 ∈ [0, 1], 𝑎, 𝑏 ∈ 𝐴 implies 𝑎 +𝑟 𝑏 ∈ 𝐴.

We give next a variant of the convex powerset monad, as
defined in [6], the sole difference being that we also include
the empty set. Given a convex algebra (𝑋, (+𝑟 )𝑟 ∈[0,1]) let
P𝑐 (𝑋 ) be the set of convex subsets of 𝑋 . Given two convex
subsets 𝐴 and 𝐵 of 𝑋 , we define

𝐴 +𝑟 𝐵 = {𝑎 +𝑟 𝑏 | 𝑎 ∈ 𝐴,𝑏 ∈ 𝐵} if 𝑟 ∈ (0, 1)
𝐴 +0 𝐵 = 𝐵

𝐴 +1 𝐵 = 𝐴

One can verify that (P𝑐 (𝑋 ), (+𝑟 )𝑟 ∈[0,1]) is indeed a convex
algebra. On morphisms P𝑐 is defined by direct images.

Definition 2.4 (Convex powerset monad). The convex pow-
erset monad (P𝑐 , [P𝑐 , `P𝑐 ) consists of the functor

P𝑐 : EM(D) → EM(D)

defined above, with the unit and multiplication defined, just
as for the powerset monad: [P𝑐

𝑋 (𝑥) = {𝑥}, respectively
`P𝑐

𝑋 (A) = ⋃A.

Notice that [6] considers only the non-empty convex pow-
erset and uses a different concrete presentation for convex
algebra involving 𝑛-ary operations (𝑝𝑖 )𝑛𝑖=1 with

∑
𝑝𝑖 = 1 for

any natural number 𝑛. The definition of the full convex pow-
erset, including the empty set, is nevertheless possible but
requires a careful case analysis for the situations where some
of the 𝑝𝑖 -s are zero.
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2.2 (Weak) Distributive Laws
In this section we recall the definitions of a distributive
law [2] and of a weak distributive law [11] and their corre-
sponding notions of liftings and extensions. Let S = (𝑆, [S, `S)
and T = (𝑇, [T, `T) be two monads on a category C.

Definition 2.5 (Distributive law). A distributive law of S
over T is a natural transformation 𝛿 : 𝑇𝑆 ⇒ 𝑆𝑇 such that
the four following diagrams commute:

𝑇𝑆𝑆 𝑆𝑇𝑆 𝑆𝑆𝑇 𝑇𝑇𝑆 𝑇𝑆𝑇 𝑆𝑇𝑇

𝑇𝑆 𝑆𝑇 𝑇𝑆 𝑆𝑇

𝑇 𝑆

𝑇𝑆 𝑆𝑇 𝑇𝑆 𝑆𝑇

𝛿𝑆

𝑇 `S

𝑆𝛿

`S𝑇

𝑇𝛿

`T𝑆

𝛿𝑇

𝑆`T

𝛿 𝛿

𝑇[S [S𝑇 [T𝑆 𝑆[T

𝛿 𝛿

Beck showed that distributive laws 𝛿 : 𝑇𝑆 ⇒ 𝑆𝑇 are in
one-to-one correspondence with liftings of S to EM(T) and
extensions of T to Kl(S), notions that we recall next.
Definition 2.6 (Lifting, extension). Let 𝑈 T : EM(T) → C
be the forgetful functor from the category of T-algebras. A
lifting of S to EM(T) is a monad S̃ = (𝑆, [̃S, ˜̀S) on EM(T)
such that the following diagram commutes

EM(T) EM(T)

C C

𝑈 T

𝑆

𝑈 T

𝑆

and, additionally,𝑈 T[̃S = [S𝑈 T and𝑈 T˜̀S = `S𝑈 T.
Let also 𝐹S : C → Kl(S) be the free functor into the

Kleisli category of S. An extension of T to Kl(S) is a monad
T̃ = (𝑇, [̃T, ˜̀T) on Kl(S) such that the following diagram
commutes

Kl(S) Kl(S)

C C

𝑇

𝐹S

𝑇

𝐹S

and, additionally, [̃T𝐹S = 𝐹S[
T and ˜̀T𝐹S = 𝐹S`

T.

When things almost work well, it is possible to drop the
last diagram of Definition 2.5 to define a weaker notion of
distributive law.
Among the various possible ways of weakeaning the no-

tion of distributive law considered in [3, 28], we consider
the one which drops the axiom involving the unit [T of T
from Definition 2.5, and which Garner simply calls weak
distributive law in [11].

Definition 2.7 (Weak distributive law). A weak distributive
law of S over T is a natural transformation 𝛿 : 𝑇𝑆 ⇒ 𝑆𝑇

such that the first three diagrams of Definition 2.5 commute,
that is, the diagrams involving the multiplications `T, `S and
the unit [S.

Example 2.8 (from [11]). There is a weak distributive law
of the powerset monad P over the ultrafilter monad 𝛽 given
by 𝛿𝑋 : 𝛽P𝑋 → P𝛽𝑋 where

𝛿𝑋 (𝔉) =
{
F ∈ 𝛽𝑋 :

⋃
A ∈ F for all A ∈ 𝔉

}
(1)

The notions of lifting and extension can be weakened
accordingly:

Definition 2.9 (Weak lifting, weak extension). A weak lift-
ing of S to EM(T) consists of a monad S̃ on EM(T) and two
natural transformations

] : 𝑈 T𝑆 ⇒ 𝑆𝑈 T and 𝜋 : 𝑆𝑈 T ⇒ 𝑈 T𝑆

such that 𝜋] = 1 and the four following diagrams commute:

𝑈 T𝑆𝑆 𝑆𝑈 T𝑆 𝑆𝑆𝑈 T 𝑈 T

𝑈 T𝑆 𝑆𝑈 T 𝑈 T𝑆 𝑆𝑈 T

𝑆𝑆𝑈 T 𝑆𝑈 T𝑆 𝑈 T𝑆𝑆 𝑈 T

𝑆𝑈 T 𝑈 T𝑆 𝑆𝑈 T 𝑈 T𝑆

]𝑆

𝑈 T˜̀S
𝑆]

`S𝑈 T
𝑈 T[̃S [S𝑈 T

] ]

𝑆𝜋

`S𝑈 T

𝜋𝑆

𝑈 T˜̀S `S𝑈 T 𝑈 T˜̀S
𝜋 𝜋

A weak extension of T to Kl(S) consists of a functor 𝑇 :
Kl(S) → Kl(S) and a natural transformation ˜̀T : 𝑇𝑇 ⇒ 𝑇

such that 𝑇𝐹S = 𝐹S𝑇 and ˜̀T𝐹S = 𝐹S`
T.

The prominent correspondence between distributive laws,
liftings and extensions extends to their weak variants, as
proved in [3, 11]:

Theorem 2.10 (from [11]). There is a bijection between weak
distributive laws of S over T and weak extensions of T to Kl(S).
Moreover, if idempotents split in C, these are also in bijection
with weak liftings of S to EM(T).

Let us elaborate a bit more on how to transform a weak
extension into a weak distributive law and then into a weak
lifting. Given a weak extension 𝑇 of T to Kl(S), the weak
distributive law 𝛿 : 𝑇𝑆 ⇒ 𝑆𝑇 is defined by 𝛿𝑋 = 𝑇 (∋), where
∋: 𝑆𝑋 ↛ 𝑋 is the Set-morphism id𝑆𝑋 viewed as a Kl(S)-
morphism. What is less usual is the next step, explained in
more detail in [11]: theweak lifting S̃ is given on an𝑇 -algebra
(𝑋, 𝑎) by splitting the idempotent 𝑆𝑎 ◦𝛿𝑋 ◦[T

𝑆𝑋
on (𝑆𝑋, 𝑆𝑎 ◦

𝛿𝑋 ) in the category of 𝑇 -semialgebras, i.e., algebras that do
not necessarily satisfy the unit axiom. This computation is
performed thoroughly in the proof of Theorem 4.1.

Example 2.11 (from [11]). The weak lifting of the powerset
monad to the category of Eilenberg-Moore algebras for 𝛽
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corresponding to the distributive law of Example 2.8 is the
Vietoris monad.

Note that there also exists a notion of distributive law
of a monad S over a functor 𝑇 , along with the expected
correspondence with functors 𝑇 extending 𝑇 to Kl(S) and
with monads S̃ lifting S to Alg(𝑇 ), the category of algebras
for the functor 𝑇 . The weak setting is actually intermediate:
it takes into account the multiplication of T but not its unit.
In the rest of this section, we focus on the case where

S = P, the powerset monad on Set. In this specific case,
the Kleisli category of P is the category Rel of sets and
relations. There is a wealth of results (going back to Barr [1]
and extensively used in [11]) pertaining to extending Set-
functors to Rel. In this context weak pullbacks play a crucial
role.

Definition 2.12. A functor isweakly cartesian if it preserves
weak pullback squares. A natural transformation is weakly
cartesian if the naturality squares are weak pullbacks.

Barr [1] showed that a Set-functor 𝑇 can be extended to
a 2-functor 𝑇 on the category Rel if and only if 𝑇 is weakly
cartesian. That 𝑇 is a 2-functor simply means that for two
relations 𝑅, 𝑅′ with 𝑅 ⊆ 𝑅′ we have 𝑇𝑅 ⊆ 𝑇𝑅′. Recall, for
example from [18], the computation of the extension functor
𝑇 . On objects, i.e. for a set 𝑋 , we have 𝑇𝑋 = 𝑇𝑋 . Given a
relation 𝑅 : 𝑋 ↛ 𝑌 , we regard it as a span with projections
denoted by 𝑝 : 𝑅 → 𝑋 and 𝑞 : 𝑅 → 𝑌 and we define

𝑇 (𝑅) = {(𝑥,𝑦) ∈ 𝑇𝑋 ×𝑇𝑌 |∃𝑧 ∈ 𝑇𝑅. (2)
𝑥 = 𝑇𝑝 (𝑧) and 𝑦 = 𝑇𝑞(𝑧)}

Similarly, a natural transformation 𝛼 : 𝑇 ⇒ 𝑇 ′ can be ex-
tended to a 2-natural transformation 𝛼 : 𝑇 ⇒ 𝑇 ′ if and only
if 𝛼 is weakly cartesian. Furthermore, in both cases the ex-
tension is unique. An immediate consequence of these facts
is the following result, see [11, Corollary 16]:

Proposition 2.13 ([11]). Let T = (𝑇, [T, `T) be a monad on
Set. If𝑇 and `T are weakly cartesian, then there exists a unique
weak extension of T to Rel whose functor is a 2-functor and
whose multiplication is 2-natural.

Combining the above proposition with Theorem 2.10, we
can define the notions of canonical weak lifting and canonical
weak distributive law.

Definition 2.14. Assume T is a monad on Set such that 𝑇
and `T are weakly cartesian. The canonical weak extension of
T to Rel is its unique extension given by Proposition 2.13. It
corresponds to a weak lifting of P to EM(T), hereafter called
the canonical weak lifting of T, and to a weak distributive
law 𝛿 : 𝑇P ⇒ P𝑇 , hereafter called the canonical weak
distributive law of P over T.

3 The Canonical Weak Distributive Law
DP ⇒ PD

In this section we present the canonical weak distributive
law DP ⇒ PD. The route map we adopt is the following.

• extend the functor D to Rel
• compute the canonical distributive law of the powerset
monad over the functor D

• show that this law is a weak distributive law of the
powersetmonad over themonadD via Proposition 2.13
and a technical lemma that proves that `D is weakly
cartesian.

It is well known that the functor D is weakly cartesian.
This was proved independently by Moss [22] and by de Vink
and Rutten [8] using the max flow-min cut theorem of net-
work theory. Hence, using Barr’s results [1], we know that
the functor D extends in a canonical way to a functor D̃ on
the category Rel of sets and relations. On objects, D̃𝑋 = D𝑋 .
Given a relation 𝑅 : 𝑋 ↛ 𝑌 , the relation D̃𝑅 : D𝑋 ↛ D𝑌 is
the relation whose graph is given by

{(𝜑,𝜓 ) ∈ D𝑋 × D𝑌 |∃Θ ∈ D𝑅.

D𝜋1 (Θ) = 𝜑 and D𝜋2 (Θ) = 𝜓 }
Identifying Rel with the Kleisli category of the powerset

monad P, corresponding to the extension D̃, we obtain a
distributive law 𝛿 of the monad P over the functor D

𝛿 : DP ⇒ PD .

This is computed by applying the extension D̃ to the iden-
tity on P𝑋 seen as a relation ∋ : P𝑋 ↛ 𝑋 , whose graph is
{(𝐴, 𝑥) | 𝐴 ⊆ 𝑋, 𝑥 ∈ 𝐴}. We can thus compute the relation
D̃(∋) : DP𝑋 ↛ D𝑋 . This corresponds in turn to the map
𝛿𝑋 : DP𝑋 → PD𝑋 defined by

𝛿𝑋 (Φ) = {𝜑 ∈ D𝑋 |∃Θ ∈ D(∋).

∀𝐴 ∈ P𝑋,Φ(𝐴) =
∑
𝑥 ∈𝐴

Θ(𝐴, 𝑥) (3)

∀𝑥 ∈ 𝑋,𝜑 (𝑥) =
∑
𝐴∋𝑥

Θ(𝐴, 𝑥)}

Lemma 3.1. The natural transformation 𝛿 is defined on a

distribution Φ ∈ DP𝑋 written as a formal series Φ =
𝑛∑
𝑖=1

𝑝𝑖𝐴𝑖

with 𝐴𝑖 ∈ P𝑋 and 𝑝𝑖 ∈ (0, 1] by

𝛿𝑋 (Φ) =
{ 𝑛∑

𝑖=1
𝑝𝑖𝜑𝑖 ∈ D𝑋 |∀𝑖 .𝜑𝑖 ∈ D𝑋 (4)

and supp(𝜑𝑖 ) ⊆ 𝐴𝑖

}
Proof. Assume 𝜑 ∈ 𝛿𝑋 (Φ) and Θ ∈ D(∋) satisfies the condi-
tions from (3). For 𝑥 ∈ 𝑋 we define 𝜑𝑖 (𝑥) = Θ(𝐴𝑖 , 𝑥)/𝑝𝑖 . One
can verify that 𝜑𝑖 ∈ D𝑋 , supp(𝜑𝑖 ) ⊆ 𝐴𝑖 and 𝜑 =

𝑛∑
𝑖=1

𝑝𝑖𝜑𝑖 .

Conversely, assume (𝜑𝑖 )1≤𝑖≤𝑛 are distributions on 𝑋 satis-
fying the conditions from (4). For 1 ≤ 𝑖 ≤ 𝑛 and 𝑥 ∈ 𝑋
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we define Θ(𝐴𝑖 , 𝑥) = 𝑝𝑖𝜑𝑖 (𝑥). For 𝐴 ∈ P𝑋 such that 𝐴 ∉

{𝐴1, . . . , 𝐴𝑛} and for 𝑥 ∈ 𝑋 we set Θ(𝐴, 𝑥) = 0. One can
verify that Θ ∈ D(∋) and that it satisfies the conditions
from (3). □

The remainder of this section is devoted to proving the
next theorem:

Theorem 3.2. The natural transformation 𝛿 : DP ⇒ PD
is a weak distributive law of the monad P over the monad D.

Proof. Recall that 𝛿 was obtained via the extension D̃ of the
functor D to Rel. Therefore, we already know that 𝛿 interacts
well with the multiplication and unit of P, since it comes
from the canonical extension of the functor D to the Kleisli
category of P. It only remains to prove that the diagram
corresponding to the interaction with `D commutes.
Using the correspondence between weak extensions and

weak distributive laws given in Theorem 2.10, it is enough
to show that D̃ is a weak extension of the monad D to Rel.
Using Proposition 2.13 we show that D̃ is in fact the canoni-
cal weak extension of D by proving that the multiplication
`D is weakly cartesian. To this end, we apply Lemma 3.3
below, in which we reduce the problem of showing that the
naturality squares of `D are weak pullbacks to finding a
non-negative solution to a linear system. We show its exis-
tence by employing Farkas’ Lemma, a key result from linear
programming duality. □

Lemma 3.3. The multiplication `D ofD is weakly cartesian.

Proof. For probability distributions we will use the formal se-
ries notation, e.g. given 𝜑 ∈ D𝑋 we will write 𝜑 =

∑𝑛
𝑖=1 𝑎𝑖𝑥𝑖

where the 𝑥𝑖 are distinct, supp(𝜑) = {𝑥𝑖 : 1 ≤ 𝑖 ≤ 𝑛} and
𝜑 (𝑥𝑖 ) = 𝑎𝑖 ∈ (0, 1]. Let 𝑓 : 𝑋 → 𝑌 and consider the diagram:

DD𝑋 DD𝑌

D𝑋 D𝑌

DD 𝑓

`D
𝑋

`D
𝑌

D 𝑓

Aswe are in the category Set, proving that the above diagram
is a weak pullback amounts to show that for all Ψ ∈ DD𝑌

and all 𝜑 ∈ D𝑋 such that `D
𝑌
(Ψ) = D 𝑓 (𝜑), there is a Φ ∈

DD𝑋 such that `D
𝑋
(Φ) = 𝜑 and DD 𝑓 (Φ) = Ψ. Let Ψ =∑𝑚

𝑗=1 𝐵 𝑗𝜓 𝑗 ∈ DD𝑌 and 𝜑 ∈ D𝑋 . We will provide (𝜑 𝑗 )1≤ 𝑗≤𝑚
in D𝑋 such that

∀𝑗 ∈ {1, ...,𝑚},D 𝑓 (𝜑 𝑗 ) = 𝜓 𝑗 (5)

`D𝑋 (
𝑚∑
𝑗=1

𝐵 𝑗𝜑 𝑗 ) = 𝜑 (6)

Assuming the existence of 𝜑 𝑗 satisfying (5) and (6) above, we
can define Φ =

∑𝑚
𝑗=1 𝐵 𝑗𝜑 𝑗 . The notation is correct because if

𝜑 𝑗 = 𝜑𝑖 , apply D 𝑓 to get 𝜓 𝑗 = 𝜓𝑖 and so 𝑖 = 𝑗 . In addition,

we obtain

DD 𝑓 (Φ) =
𝑚∑
𝑗=1

𝐵 𝑗D 𝑓 (𝜑 𝑗 ) =
𝑚∑
𝑗=1

𝐵 𝑗𝜓 𝑗 = Ψ

by condition (5), and `D
𝑋
(Φ) = 𝜑 by (6). So this would achieve

the proof. It remains to prove the existence of the distribu-
tions 𝜑 𝑗 .
The conditions (5) and (6) can be rewritten as a linear

system with variables 𝜑 𝑗 (𝑥) for 1 ≤ 𝑗 ≤ 𝑚 and 𝑥 ∈ supp(𝜑),
for which we need to exhibit a non-negative solution.

∀𝑦 ∈ 𝑌,∀𝑗 ∈ {1, ...,𝑚},
∑
𝑥 ∈𝑋

𝜑 𝑗 (𝑥) 𝑓∗ (𝑥,𝑦) = 𝜓 𝑗 (𝑦) (7)

∀𝑥 ∈ 𝑋,

𝑚∑
𝑗=1

𝐵 𝑗𝜑 𝑗 (𝑥) = 𝜑 (𝑥) (8)

One can solve this system one𝑦 at a time. Indeed, let𝑦 ∈ 𝑌

and consider only 𝑓 −1 ({𝑦}) to get the system

∀𝑗 ∈ {1, ...,𝑚},
∑

𝑥 ∈𝑓 −1 ( {𝑦 })
𝜑
𝑦

𝑗
(𝑥) = 𝜓 𝑗 (𝑦) (9)

∀𝑥 ∈ 𝑓 −1 ({𝑦}),
𝑚∑
𝑗=1

𝐵 𝑗𝜑
𝑦

𝑗
(𝑥) = 𝜑 (𝑥) (10)

If this system has a non-negative solution (𝜑𝑦

𝑗
)1≤ 𝑗≤𝑚 for ev-

ery 𝑦 ∈ 𝑌 , then there is a global solution defined by 𝜑 𝑗 (𝑥) =
𝜑
𝑦

𝑗
(𝑥) if 𝑥 ∈ 𝑓 −1 ({𝑦}). One must justify that 𝜑 𝑗 ∈ D𝑋 . First,

the equation (10) above entails that supp(𝜑 𝑗 ) ⊆ supp(𝜑),
hence supp(𝜑 𝑗 ) is finite. Moreover:

∑
𝑥 ∈𝑋

𝜑 𝑗 (𝑥) =
∑
𝑦∈𝑌

∑
𝑥 ∈𝑓 −1 ( {𝑦 })

𝜑
𝑦

𝑗
(𝑥) =

∑
𝑦∈𝑌

𝜓 𝑗 (𝑦) = 1 (11)

Let us fix the 𝑦 ∈ 𝑌 and work on the system above. Write
𝑓 −1 ({𝑦}) ∩ supp(𝜑) = {𝑥1, ..., 𝑥𝑘 }. The system can be rewrit-
ten

∀𝑗 ∈ {1, ...,𝑚},
𝑘∑
𝑖=1

𝜑
𝑦

𝑗
(𝑥𝑖 ) = 𝜓 𝑗 (𝑦) (12)

∀𝑖 ∈ {1, ..., 𝑘},
𝑚∑
𝑗=1

𝐵 𝑗𝜑
𝑦

𝑗
(𝑥𝑖 ) = 𝜑 (𝑥𝑖 ) (13)

Consider the vectors

𝑢 = (𝑢1,1, ..., 𝑢𝑚,1, ..., 𝑢1,𝑘 , ..., 𝑢𝑚,𝑘 ) (14)

= (𝜑𝑦

1 (𝑥1), ..., 𝜑
𝑦
𝑚 (𝑥1), ..., 𝜑𝑦

1 (𝑥𝑘 ), ..., 𝜑
𝑦
𝑚 (𝑥𝑘 )) (15)

𝑣 = (𝑣1, ...𝑣𝑚+𝑘 ) = (𝜓1 (𝑦), ...,𝜓𝑚 (𝑦), 𝜑 (𝑥1), ...𝜑 (𝑥𝑘 )) (16)
𝐵 = (𝐵1, ..., 𝐵𝑚) (17)

Our aim is to prove the existence of a non-negative solution
of the system𝑀𝑘𝑢 = 𝑣 , where
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𝑀𝑘 =

©«
𝐼𝑚 𝐼𝑚 . . . 𝐼𝑚
𝐵 0 . . . 0
0 𝐵 . . . 0
0 0 . . . 0
0 0 . . . 𝐵

ª®®®®®¬
∈ M𝑚+𝑘,𝑚𝑘 (R) (18)

Recall that equation `D
𝑌
(Ψ) = D 𝑓 (𝜑) holds. In particular

on 𝑦 we have
∑𝑚

𝑗=1 𝐵 𝑗𝜓 𝑗 (𝑦) =
∑𝑘

𝑖=1 𝜑 (𝑥𝑖 ), which is the same
as ⟨𝐵−

𝑘
| 𝑣⟩ = 0where 𝐵−

𝑘
= (𝐵1, ..., 𝐵𝑚,−1, ...−1) is of length

𝑚+𝑘 . The notation ⟨𝑢 | 𝑣⟩ stands for the usual scalar product
of vectors.
To solve this efficiently we will invoke a lemma from

Farkas [10].

Lemma 3.4. Let 𝐴 ∈ M𝑝,𝑞 (R) and 𝑏 ∈ R𝑝 . Then exactly one
of the following statements is true:

• There exists an 𝑥 ∈ R𝑞 such that 𝐴𝑥 = 𝑏 and 𝑥 ≥ 0.
• There exists an 𝑦 ∈ R𝑝 such that 𝐴𝑇𝑦 ≥ 0 and 𝑏𝑇𝑦 < 0.

We use Farkas’ lemma with 𝑝 = 𝑚 + 𝑘 , 𝑞 = 𝑚𝑘 , 𝐴 = 𝑀

and 𝑏 = 𝑣 . Assume, towards a contradiction, that there exists
an 𝑦 ∈ R𝑚+𝑘 such that𝑀𝑇𝑦 ≥ 0 and ⟨𝑣 | 𝑦⟩ < 0. Along with
the fact that ⟨𝐵−

𝑘
| 𝑣⟩ = 0, this yields the following system

∀𝑖 ∈ {1, ...,𝑚},∀𝑗 ∈ {1, ..., 𝑘},𝑦𝑖 + 𝐵𝑖𝑦𝑚+𝑗 ≥ 0 (19)
𝑚+𝑘∑
𝑖=1

𝑣𝑖𝑦𝑖 < 0 (20)

𝑚∑
𝑖=1

𝐵𝑖𝑣𝑖 =

𝑘∑
𝑗=1

𝑣𝑚+𝑗 (21)

Recall that all 𝐵𝑖 and 𝑣𝑖 are positive. For a fixed 𝑗 ∈
{1, . . . , 𝑘}, sum equation (19)𝑖 times 𝑣𝑖 for all 𝑖 ∈ {1, ...,𝑚}
to get

𝑚∑
𝑖=1

𝑣𝑖𝑦𝑖 + 𝑦𝑚+𝑗

[
𝑚∑
𝑖=1

𝐵𝑖𝑣𝑖

]
≥ 0 (22)

Using (21) and then (20) we obtain

𝑦𝑚+𝑗

[
𝑘∑
𝑙=1

𝑣𝑚+𝑙

]
≥ −

𝑚∑
𝑖=1

𝑣𝑖𝑦𝑖 >

𝑘∑
𝑙=1

𝑣𝑚+𝑙𝑦𝑚+𝑙

Let 𝑆 =

(∑𝑘
𝑙=1 𝑣𝑚+𝑙𝑦𝑚+𝑙

)
/
(∑𝑘

𝑙=1 𝑣𝑚+𝑙
)
. We just proved that

for all 𝑗 we have 𝑦𝑚+𝑗 > 𝑆 . Hence
𝑣𝑚+𝑗𝑦𝑚+𝑗∑𝑘

𝑙=1 𝑣𝑚+𝑙
> 𝑆

𝑣𝑚+𝑗∑𝑘
𝑙=1 𝑣𝑚+𝑙

(23)

and summing these inequalities for all 𝑗 ∈ {1, ..., 𝑘} pro-
duces the contradiction 𝑆 > 𝑆 . Therefore, the first property
of Farkas’ lemma is true. This gives us a solution 𝑢 to the
equation 𝑀𝑘𝑢 = 𝑣 such that 𝑢 ≥ 0, i.e., this gives rise to a
proper distribution. Hence `D is weakly cartesian. □

We end up this section with the remark concerning the
troublesome unit [D . Indeed, this natural transformation is
not weakly cartesian, as the next example shows. This is the

reason why the canonical extension of the monad D to Rel
is only a weak extension.

Example 3.5. Consider the unique map ! : {0, 1} → {0}.
Then the naturality square

{0, 1} D({0, 1})

{0} D({0})
!

[D
{0,1}

D!
[D
{0}

is not a weak pullback. Indeed, consider 𝜑 = 1
20 + 1

21 ∈
D({0, 1}). Then [D

{0} (0) = D!(𝜑), but 𝜑 is not in the image
of [D

{0,1} .

4 The Weak Lifting of P is P𝑐
This section aims at identifying the convex powerset monad
P𝑐 of Definition 2.4 as the canonical weak lifting of the pow-
erset monad P to the category of convex algebras.

Using the correspondence between weak distributive laws,
weak liftings and weak extensions (see [11]), we know that
the canonical weak distributive law 𝛿 : DP ⇒ PD exhib-
ited in Theorem 3.2 induces a weak lifting of the powerset
monad P to EM(D). Garner [11, Proposition 13] also pro-
vides the recipe for computing this weak lifting when idem-
potents split in the base category and we will apply it in our
situation.

Theorem 4.1. The canonical weak lifting of the powerset
monad to the category of convex algebras is the convex powerset
monad.

Proof. We will also consider the category of semi-algebras
for the monad D, that is, maps 𝑎 : D𝑋 → 𝑋 which interact
well with the multiplication `D , but not necessarily with
[D . It is easy to see that the weak distributive law entails
the existence of a strict lifting of P to the category of D-
semialgebras. For such a semi-algebra 𝑎 : D𝑋 → 𝑋 the lift-
ing is computed as in Beck’s situation as the composite

DP𝑋 PD𝑋 P𝑋𝛿𝑋 P𝑎

We consider next a D-algebra (𝑋, 𝑎), that is, an object of
EM(D). Of course this can also be seen as a D-semialgebra.
Following the proof of [11, Proposition 13] we know that the
composite map

𝑓 = P𝑋 DP𝑋 PD𝑋 P𝑋
[D
P𝑋 𝛿𝑋 P𝑎

is an idempotent in the category ofD-semialgebras and that
the weak lifting P̃ (𝑋, 𝑎) can be computed by splitting this
idempotent in the category of D-semialgebras. In loc. cit.
Garner shows that in this fashion we obtain an algebra.

To finish the proof it remains to compute the idempotent
𝑓 and to split it. Given 𝐴 ∈ P𝑋 we can write [D

P𝑋 (𝐴) as the
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formal series 1 · 𝐴. Hence, by Lemma 3.1 we obtain

(𝛿𝑋 ◦ [D
P𝑋 ) (𝐴) = {𝜑 ∈ D𝑋 | supp(𝜑) ⊆ 𝐴}

Henceforth, our idempotent is the function 𝑓 : P𝑋 → P𝑋
defined by

𝑓 (𝐴) = {𝑎(𝜑) | 𝜑 ∈ D𝑋 such that supp(𝜑) ⊆ 𝐴} .

One gets the D-algebra P̃ (𝑋, 𝑎) by splitting the idempotent
𝑓 . Note that a fixpoint of 𝑓 is an 𝐴 ∈ P𝑋 that satisfies

∀
𝑛∑
𝑖=1

𝑝𝑖 = 1,∀𝑥1...𝑥𝑛 ∈ 𝐴, 𝑎

(
𝑛∑
𝑖=1

𝑝𝑖𝑥𝑖

)
∈ 𝐴 (24)

∀𝑥 ∈ 𝐴, ∃𝜑 ∈ D𝑋, supp(𝜑) ⊆ 𝐴 and 𝑥 = 𝑎(𝜑) (25)

The second condition is trivial using [D
𝑋
(𝑥) and the projec-

tion axiom. Hence fixpoints of 𝑓 are convex subsets of 𝑋
w.r.t. (𝑋, 𝑎) i.e. the carrier set of P̃ (𝑋, 𝑎) is P𝑐𝑋 . □

Let us now consider the category of Eilenberg-Moore al-
gebras for the monad P𝑐 with the respective forgetful and
free functors. The composite adjunction induces a monad
structure on the functor𝑈 DP𝑐𝐹D .

EM(P𝑐 ) EM(D) Set
𝑈 P𝑐 𝑈D

𝐹P𝑐 𝐹D

We thus obtain, in a systematic way, exactly the monad P𝑐D
of convex subsets of finite distributions which was used
in [20] and with mild variations in [6, 7, 12].

Using [11, Lemma 14] or [3, Proposition 3.7] we know that
the category of Eilenberg-Moore algebras for the monadP𝑐 is
isomorphic to the category of Eilenberg-Moore algebras for
P𝑐D and that these algebras can be alternatively described
as 𝛿-algebras, that is sets 𝑋 equipped with both a P-algebra
structure

∨
: P𝑋 → 𝑋 and aD-algebra structure 𝑎 : D𝑋 →

𝑋 , which are related by the distributive law 𝛿 :

DP𝑋 PD𝑋

D𝑋 P𝑋

𝑋

𝛿𝑋

D ∨
P𝑎

𝑎 ∨
This characterization gives an immediate concrete presenta-
tion for the P𝑐D-algebras. These are algebras

(𝑋,
∨

, (+𝑟 )𝑟 ∈[0,1])

so that (𝑋,∨) is a complete sup-semilattice, (𝑋, (+𝑟 )𝑟 ∈[0,1]))
is a convex algebra, and the following distributivity axiom
holds for 𝑟 ∈ (0, 1):

(
∨

𝑥𝑖 ) +𝑟 𝑦 =
∨

(𝑥𝑖 +𝑟 𝑦)

This is very similar to the algebraic theory of convex semi-
lattices presented in [7]. However, the monad 𝐶 considered
in loc. cit. consists only in the finitely generated non-empty

convex sets of distributions, hence only a binary sup is used
instead of

∨
.

5 Generalized determinization via weak
distributive law

If we forget about initial states, deterministic automata over
a finite alphabet 𝐴 can be identified with coalgebras for the
functor 2 × (−)𝐴, while their non-deterministic counterpart
can be seen as coalgebras for the functor 2 × P(−)𝐴. The
procedure of turning a non-deterministic automaton with
states 𝑄 into a deterministic automaton with states P(𝑄)
– also known as the powerset construction – can thus be
seen as a way of transforming a coalgebra 𝑐 : 𝑄 → 2 ×
(P𝑄)𝐴 into a coalgebra 𝑐# : P𝑄 → 2 × (P𝑄)𝐴. In [26] this
was generalized to wider setting, considering on a given
category C a functor 𝐹 and a monad T = (𝑇, [T, `T), the
former specifying the branching behavior of a given system.
Whenever the functor 𝐹 can be lifted to a functor 𝐹 on the
Eilenberg-Moore category of T, i.e., in the presence of a
distributive law

𝑇𝐹 ⇒ 𝐹𝑇

of the functor 𝐹 over the monad T, then one can transform
𝐹𝑇 -coalgebras with carrier 𝑋 into 𝐹 -coalgebras with carrier
𝑇𝑋 . This was nicely summarized in [13] by stating that the
free functor 𝐹T : C → EM(T) can be lifted to a functor be-
tween the categories of coalgebras. We thus have the follow-
ing commuting diagram, where the vertical arrows denote
the forgetful functors mapping an 𝐹𝑇 -coalgebra, respectively
an 𝐹 -coalgebra, to its carrier set, respectively T-algebra.

CoAlg(𝐹𝑇 ) CoAlg(𝐹 )

C EM(T)

𝐹T

𝐹T

(26)

The generalized powerset construction has many applica-
tions including ‘determinization’ of partial Mealy machines,
automata with exceptions or with side effects, total subse-
quential transducers, see e.g., [26]. However, as stated in [6],
the translation of non-deterministic probabilistic automata
into belief-state transformers cannot be seen as an instance
of the generalized powerset construction for the lack of a
suitable distributive law DP ⇒ PD.

So we turn our attention to adapting the generalized pow-
erset construction of [26] to the setting of weak distributive
laws and then we will apply this framework to probabilistic
automata. We will assume that idempotents split in C and
we will consider a weak distributive law

𝛿 : 𝑇𝑆 ⇒ 𝑆𝑇

of a monad S = (𝑆, [S, `S) over a monad T = (𝑇, [T, `T), but
we could develop the same theory assuming just a functor
𝑆 , instead of a monad S. By [11], we know that such a weak
distributive law corresponds to a weak lifting of S to the
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category EM(T) of Eilenberg-Moore algebras for T. Let us
recall the adjunction 𝐹T ⊣ 𝑈 T : EM(T) → C.

Lemma 5.1. Consider a weak distributive law 𝛿 : 𝑇𝑆 ⇒ 𝑆𝑇

of S over T and let S̃ be the corresponding weak lifting of S to
EM(T).

i) Then, the free functor 𝐹T lifts to a functor 𝐹T transform-
ing an 𝑆𝑇 -coalgebra into an 𝑆-coalgebra.

CoAlg(𝑆𝑇 ) CoAlg(𝑆)

C EM(T)

𝐹T

𝐹T

ii) The forgetful functor𝑈 T lifts to a functor𝑈 T transform-
ing an 𝑆-coalgebra into an 𝑆-coalgebra.

CoAlg(𝑆) CoAlg(𝑆)

EM(T) C

𝑈 T

𝑈 T

Proof. i) Recall that we have a natural transformation

𝜋 : 𝑆𝑈 T ⇒ 𝑈 T𝑆

as in Definition 2.9. Consider a coalgebra 𝑐 : 𝑋 → 𝑆𝑇𝑋 in
CoAlg(𝑆𝑇 ). Upon writing 𝑇 = 𝑈 T𝐹T and composing with 𝜋 ,
we obtain the composite mapping

𝑋 𝑆𝑈 T𝐹T𝑋 𝑈 T𝑆𝐹T𝑋 .
𝑐 𝜋

𝐹T𝑋

Now consider the adjoint transpose 𝑐# of 𝜋𝐹T𝑋 ◦ 𝑐:

𝐹T𝑋 𝑆𝐹T𝑋
𝑐#

This is a coalgebra for the functor 𝑆 with carrier the free
T-algebra on 𝑋 . Clearly this construction is functorial, so we
have obtained the desired lifting of 𝐹T.
ii) Recall from Definition 2.9 the natural transformation

] : 𝑈 T𝑆 ⇒ 𝑆𝑈 T

Consider a 𝑆-coalgebra 𝑐 : 𝑋 → 𝑆𝑋 . Applying the for-
getful functor 𝑈 T and composing with ]𝑋 , we obtain the
𝑆-coalgebra:

𝑈 T𝑋 𝑈 T𝑆𝑋 𝑆𝑈 T𝑋
𝑈 T𝑐 ]𝑋

This construction is functorial and yields the lifting 𝑈 T of
𝑈 T. □

Notice that the lifting 𝐹T defined above extends the con-
struction in (26) to the setting of weak distributive laws, and
when the weak distributive law is a strict distributive law in
the sense of Beck, then we retrieve exactly the generalized
powerset construction.
Analyzing the proof of Lemma 5.1, we notice that the

functor 𝐹T factors through the category of 𝑆𝑇 -coalgebras.

Recall from [11] that 𝑆𝑇 is obtained as the monad induced
by the composite adjunction

EM(Ŝ) EM(T) C
𝑈 Ŝ 𝑈 T

𝐹 Ŝ 𝐹T

hence 𝑆𝑇 = 𝑈 T𝑆𝐹T. So the map 𝜋𝐹T𝑋 ◦ 𝑐 obtained in the
proof of Lemma 5.1 is a 𝑆𝑇 -coalgebra. Thus the functor 𝐹T
factors through CoAlg(𝑆𝑇 ) as in the following diagram

CoAlg(𝑆𝑇 ) CoAlg(𝑆𝑇 ) CoAlg(𝑆)

C C EM(T)

𝜋

𝐹T

𝐹T

id 𝐹T

(27)

Application to probabilistic automata. Let us instan-
tiate this generic framework to the setting of probabilistic
automata. For the sake of simplicity, we will assume that the
input alphabet consists in only one letter, so we will iden-
tify probabilistic automata with coalgebras 𝑐 : 𝑋 → PD𝑋 .
The data in the first part of this section then instantiates as
follows:

T finite distribution monad D
S powerset monad P

EM(T) convex algebras (𝑋, (+𝑟 )𝑟 ∈[0,1])
S̃ convex powerset monad P𝑐
S̃T convex sets of distributions monad P𝑐D
𝜋 taking the convex hull of a subset of a

convex algebra
] inclusion, a convex subset of a convex algebra

is, in particular, a subset of its carrier set
The functor 𝐹T provided in Lemma 5.1 transforms a PD-

coalgebra with a set of states 𝑋 into a P𝑐-coalgebra whose
carrier is the convex algebra D𝑋 of finite distributions over
𝑋 . This corresponds precisely to transforming a probabilistic
automata into a belief-state transformer.

This transformation can be decomposed in two steps:
• First, for each state 𝑞 of the automaton one takes the
convex hull of the set of distributions 𝑐 (𝑞). This corre-
sponds to composing with the natural transformation
𝜋 and one obtains a coalgebra for the functor P𝑐D.

• The second step consists in determinizing this coalge-
bra into a S̃-coalgebra. This is rather easy since P𝑐D𝑋

carries a convex algebra structure.
Let us see how this construction compares to the gener-

alized powerset construction of [6, Section 6]. The functor
F which performs the generalized determinization in loc.
cit. corresponds to the functor 𝐹T in (27), hence only to the
second step of our transformation. In [6] the convexification
of a PD-coalgebra into a P𝑐D-coalgebra is performed by
hand, via the functor Tconv of [6, Example 12]. The convex
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hull natural transformation 𝜋 , which is part of the defini-
tion of a weak lifting in our setting is called conv in loc. cit.
and is not featured in the definition of a quasi-lax lifting [6,
Definition 24]. So one advantage of our framework is that
on the one hand, we identify in which sense the monad P𝑐
constructed in [6] is canonical, and, on the other, we fully
explain the determinization of a probabilistic automaton in
one-go.

6 Conclusions
Summary of results. The counterexample provided in [30]

for the existence of a distributive law DP ⇒ PD already
hints at the fact that the trouble lies with the unit [D of the
monad D. In this paper we proved that the axiom involv-
ing this unit is indeed the only one which poses problems.
We proved that we have a canonical weak extension of the
monadD to the categoryRel of sets and relations. This exten-
sion induces a canonical weak distributive law DP ⇒ PD,
which in turn corresponds to a canonical weak lifting of the
powerset monad to the category of Eilenberg-Moore alge-
bras for D – that is– the category of convex algebras. We
identify in this fashion the convex powerset monad P𝑐 as
the canonical weak lifting of the powerset monad to convex
algebras.

The canonical weak distributive law also induces the com-
posite monad P𝑐D : Set → Set mapping a set to the convex
subsets of distributions on 𝑋 . This monad and some of its
variations were previously considered in the literature to
model systems displaying both non-deterministic and proba-
bilistic behavior [7, 12, 20]–and we exhibit here as a canoni-
cal monad for composing non-determinism and probabilistic
choice.

Furthermore, we recover almost automatically a concrete
presentation for the P𝑐D-algebras. This is very similar to
the presentation provided in [7] for the monad of non-empty
finitely generated convex subsets of distributions, which
plays an important role in the trace semantics of nondeter-
ministic probabilistic systems.

A more theoretic contribution is the extension of the gen-
eralized powerset construction of [26] to weak distributive
laws. Applying this construction to the canonical weak dis-
tributive law DP ⇒ PD, we obtain a systematic way of
translating a non-deterministic probabilistic system into a
belief state transformer. We thus streamline and emphasize
the canonicity of the results presented in [6].

Future research directions. A way of optimizing proofs
of behavioral equivalences of systems and, more generally,
of various coinductive properties is to employ the so-called
up-to techniques [24]. These have been understood in a cat-
egory theoretic setting via various forms of distributive laws
in [4, 5]. This theory could be extended to the setting of
weak distributive laws, and we can instantiate it to prove

the compatibility of the up-to convex hull technique of [6,
Section 7].
Another question is whether we can obtain a weak dis-

tributive law of the powerset monad over the countable dis-
tribution monad similar to the one presented here.

Also, canwe obtain the composite monad considered in [7]
of finitely generated convex subsets of distributions from a
weak distributive law?

Another line of research involves stepping away from
the category of sets to various categories of domains. In
particular we plan to investigate whether the power Kegel-
spitzen [16] can be obtained as a canonical weak lifting of a
powerdomain.
We mentioned that the literature abounds of negative

results of non-existence of strict distributive laws, see for
example the ‘no-go’ theorems of [33]. Can we revisit these
theorems? In which of these cases do we have various forms
of weak distributive laws?
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