
On the compositionality of monads via weak
distributive laws

Alexandre Goy
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Abstracting computer science → category theory

I Principle of compositionality
I The whole is determined by the parts and the arrangement rules
I Complex software is made of small programs

I Category theory is relevant to computer science
I Based on ◦ operator → compositional by essence
I High abstraction → high generality
I Behavioural → heuristics to find meaningful constructions
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Effects
I Branching behaviour of a program

def division(p,q):

if q == 0:

return None

else:

return p//q

I This program outputs some nat, or nothing

I This program outputs Maybe nat

I Monads model computational effects (Moggi 91, Plotkin - Power 02)

e.g. Haskell language (Wadler 95)
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Monads

I Monads T , S , . . . are triples

effect create effect collapse effects

functor unit multiplication

obeying 3 coherence axioms

= = =
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The powerset monad P

x ∈ X

{x} ∈ PX

U ∈ PPX

⋃
U ∈ PX

PX = subsets of X

P powerset monad* = nondeterministic choice ∨ = sup-semilattices

I x ∨ x = x

I x ∨ y = y ∨ x

I x ∨ (y ∨ z) = (x ∨ y) ∨ z

*technically finite powerset monad here
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The distribution monad D

x ∈ X

δx ∈ DX

Φ ∈ DDX

(mixture of Φ) ∈ DX

DX =
probability

distributions
over X

Dirac ’expected value’

D distribution monad = probabilistic choice ⊕p = convex algebras

I x ⊕1 y = x

I x ⊕p x = x

I x ⊕p y = y ⊕1−p x

I (x ⊕p y)⊕r z = x ⊕pr

(
y ⊕ r−pr

1−pr
z
)

if p, r 6= 1
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Combining effects

What about composition of effects?

I PP = two non-deterministic choices in a row

I PD = one nondeterministic choice, then one probabilistic choice

I DP = one probabilistic choice, then one nondeterministic choice

I DD = two probabilistic choices in a row

Monads do not compose in general!

I S monad + T monad ; ST monad
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Combining effects

X X

?
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Combining effects

X X X
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Distributive laws
(Beck 69)

I A distributive law λ : TS → ST is a

swap effects

obeying 4 compatibility axioms

compatible

with

compatible

with

compatible

with

compatible

with
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Distributive laws

extensions of T
to free S-algebras

liftings of S
to T -algebras

distributive laws
TS → ST

monad structures
on ST
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No-go theorems

I No λ : DP → PD (Plotkin, Varacca 03, Varacca - Winskel 06)

I No λ : PP → PP (Klin - Salamanca 18)

I No λ : PD → DP (Varacca 03, Zwart - Marsden 19)

I No λ : DD → DD (Zwart - Marsden 19)

I and many other no-go situations (Zwart - Marsden 19, Zwart 20)

I No monad PP (Klin - Salamanca 18)

I No monad PD (Dahlqvist - Neves 18)
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Weak distributive laws
(Garner 20)

I A weak distributive law λ : TS → ST is a

swap effects

obeying 3 compatibility axioms

compatible

with

compatible

with

compatible

with
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Weak distributive laws

weak
extensions of T

to free S-algebras

weak
liftings of S

to T -algebras

weak
distributive laws

TS → ST

monad structures
almost on ST

×

*

*

×

*⇒ if idempotents split in the base category
15 / 28



Monotone (weak) distributive laws

extensions of T
to free P-algebras

= to relations

liftings of P
to T -algebras

distributive laws
TP → PT

monad structures
on PT

I Monotone = the extension preserves relation inclusion
≈ well-behaved

Theorem (Barr 70

, Garner 20

)

I There is at most one monotone

weak

distributive law TP → PT .

I Existence ⇐⇒ T functor, unit, multiplication are weakly cartesian

I Explicit formula
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Contributions

I Theory
I coweak distributive laws
I trivial (co)weak distributive laws
I iterated (co)weak distributive laws

I Case studies in Set
I DP → PD and the convex powerset monad LICS’20
I algebraic distributivity of ⊕p over ∨ LICS’20
I discussion on PD → DP

I Coalgebras
I generalised determinisation of coalgebras, e.g.

probabilistic automata via DP → PD LICS’20
alternating automata via PP → PP ICALP’21

I compatibility of up-to techniques

I Case studies outside Set
I toposes, e.g. EE→ EE+ Coq proofs ICALP’21
I compact Hausdorff spaces, e.g. VV → VV ICALP’21
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Distribution weakly distributes over powerset

Theorem (G. - Petrişan LICS’20)
There is a unique monotone weak distributive law λ : DP → PD.

λX

(∑
pi · Ui

)
=
{∑

pi · ϕi |ϕi distribution on Ui

}
I Requires a new technical result: D multiplication is weakly cartesian

I Works with finite distributions and countable distributions

I Provides a new categorical answer to the longstanding problem of
composing probability and non-determinism:

(Mislove 00)

(Tix - Keimel - Plotkin 09)

(Keimel - Plotkin 17)
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The convex powerset monad

Theorem (G. - Petrişan LICS’20)
The weak lifting corresponding to the monotone DP → PD is the convex
powerset monad on convex algebras

(X ,⊕p) 7→ (convex subsets of X , ’pointwise’ ⊕p)

i.e.

U ⊕p V = {u ⊕p v | u ∈ U, v ∈ V }
U ⊕1 V = U

U ⊕0 V = V

I A known monad whose existence was puzzling

(Jacobs 08, Bonchi - Silva - Sokolova 17)

I Now obtained ’for free’ via a generic procedure

19 / 28
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Coalgebra + distributive law → determinisation
Step 1. Standard determinisation algorithm, state space X 7→ PX

x y 7→ {x} {x , y}

a,b

a a

b a

b

Step 2. Determinisation is a functor

between categories of coalgebras

Coalg(GP)→ Coalg(G )

relying on a distributive law PG → GP, where G = 2× (−)A

Step 3. Any distributive law TF → FT yields a generalised determinisation

Coalg(FT ) Coalg(F )

Set Set

get states

determinisation

get states

state space expansion

T

that factors through Coalg(F ), where F is the lifting.

(Jacobs - Silva - Sokolova 15)
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Coalgebra + weak distributive law → determinisation

Theorem (G. - Petrişan LICS’20)
Any weak distributive law TF → FT yields a generalised determinisation

Coalg(FT ) Coalg(F )

Set Set

get states

determinisation

get states

state space expansion

T

that factors through Coalg(F ), where F is the weak lifting.
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From probabilistic automata to belief-state transformers
I What gives the monotone DP → PD?

I Coalg(PD) with states X ≈ probabilistic automata

one nondeterministic choice, then one probabilistic choice

I Coalg(P) with states DX ≈ belief-state transformers

one nondeterministic choice, states are distributions

y y ⊕ 1
2
z

x z 7→ x

w z ⊕ 1
2
w

a

a

a

a

1
2

1
2

1
2

1
2

On the right, x can a-transition to any distribution (y ⊕ 1
2
z)⊕p (z ⊕ 1

2
w).

I A known determinisation whose existence was puzzling

(Bonchi - Silva - Sokolova 17)

I Now obtained ’for free’ via a generic procedure
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A case study of non-Set laws
I Can we generalise DP → PD to continuous probability?

I What are advantages of categorical methods over algebraic ones?

(Parlant 20, Zwart 20)

I Study laws in other categories than Set

I Category of compact Hausdorff spaces is convenient:

effect \category Set KHaus
non-determinism powerset P Vietoris V

probability distribution D Radon R

I First goal: find a Barr-like theorem

I Vietoris monad on a compact Hausdorff space X :

x ∈ X

{x} ∈ VX

U ∈ VVX

⋃
U ∈ VX

VX = closed subsets of X

23 / 28



A case study of non-Set laws
I Can we generalise DP → PD to continuous probability?

I What are advantages of categorical methods over algebraic ones?

(Parlant 20, Zwart 20)

I Study laws in other categories than Set

I Category of compact Hausdorff spaces is convenient:

effect \category Set KHaus
non-determinism powerset P Vietoris V

probability distribution D Radon R

I First goal: find a Barr-like theorem

I Vietoris monad on a compact Hausdorff space X :

x ∈ X

{x} ∈ VX

U ∈ VVX

⋃
U ∈ VX

VX = closed subsets of X

23 / 28



A case study of non-Set laws
I Can we generalise DP → PD to continuous probability?

I What are advantages of categorical methods over algebraic ones?

(Parlant 20, Zwart 20)

I Study laws in other categories than Set

I Category of compact Hausdorff spaces is convenient:

effect \category Set KHaus
non-determinism powerset P Vietoris V

probability distribution D Radon R

I First goal: find a Barr-like theorem

I Vietoris monad on a compact Hausdorff space X :

x ∈ X

{x} ∈ VX

U ∈ VVX

⋃
U ∈ VX

VX = closed subsets of X

23 / 28



Relations in KHaus

functions

continuouscontinuous

relations

closed

relations

⊆ ⊆

(Bezhanishvili et al. 19)

KHaus free V -algebras Rel(KHaus)
graph

graph

forget continuity
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Weak distributive laws in KHaus

Theorem (G. - Petrişan - Aiguier ICALP’21)

I There is at most one* monotone

weak

distributive law TV → VT .

I Existence ⇐⇒ T functor, unit, multiplication are nearly cartesian

T preserves strong epis and Rel(T ) preserves continuity

Theorem (G. - Petrişan - Aiguier ICALP’21)
There is a monotone weak distributive law VV → VV . For C ∈ VVX ,

λX (C) =

(
�
⋃
C∈C

C

)
∩

(⋂
C∈C

♦C

)

where

�C = {B closed in X | B ⊆ C}
♦C = {B closed in X | B ∩ C 6= ∅}

*at most one coming from a relational extension
25 / 28
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Conclusion

Weak distributive laws are relevant to tackle ’almost working’ cases

1. Finally combines probabilistic choice and nondeterministic choice,
categorically

2. Explains mysterious results from the literature

3. More versatile than algebraic methods, KHaus as a proof of concept

26 / 28



Future work

Conjecture (Generalised DP → PD)
There is a monotone weak distributive law RV → VR. For m ∈ RVX ,

λX (m) =

{
m′ Radon measure on X such that
∀(C,B) ∈ VVX × VX ,

⋃
C ⊆ B ⇒ m(C) ≤ m′(B)

}

I Other laws : are there
I Non-trivial coweak distributive laws?
I Non-trivial non-monotone weak distributive laws?
I No-go results e.g. PD → DP?
I Meaningful laws in other categories e.g. quasi-Borel spaces?
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Thank you!
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Coweak distributive laws

I A coweak distributive law λ : TS → ST is a

swap effects

obeying 3 compatibility axioms

compatible

with

compatible

with

compatible

with

I coweak distributive law ⇔ coweak lifting ⇔* coweak extension

⇒ monad almost on ST

*⇒ if every retract of a free S-algebra is free
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Trivial coweak distributive laws

I A monad morphism is a obeying 2 obvious compatibility axioms

Theorem (G.)

A monad morphism yields a coweak distributive law defined by

but the composite monad is just the blue one.

I Example: trivial weak distributive law PP → PP

λX (U) =
{⋃
U
}

Weak extension on Rel is the ’relation graph’ functor

R ⊆ X × Y 7→ {(U,R[U]) | U ⊆ X} ⊆ PX × PY
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I A monad morphism is a obeying 2 obvious compatibility axioms

Theorem (G.)

A monad morphism yields a coweak distributive law defined by

but the composite monad is just the orange one.

I Example: trivial coweak distributive law PP → PP

λX (U) =
{
{x} | x ∈

⋃
U
}

Coweak lifting on sup-semilattices is the ’make free’ functor

(X ,∨) 7→
(
PX ,

⋃)
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Iterated (co)weak distributive laws
Given monads

and distributive laws

(weak - plain - weak)

such that the Yang-Baxter equation holds

=

then the following is a

weak

distributive law (Cheng 11)
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Algebraic distributivity of ⊕p over ∨
Theorem (Bonchi - Sokolova - Vignudelli 19)
The monad of convex, non-empty, finitely generated subsets of
distributions on Set is presented by the theory of convex semilattices i.e.

I theory of sup-semilattices ∨
I theory of convex algebras ⊕p

I distributivity axiom

(x ∨ y)⊕p z = (x ⊕p z) ∨ (y ⊕p z)

Let PcD be the monad of convex subsets of distributions on Set. The
monotone weak distributive law λ : DP → PD and the fact

λ-algebras ∼= PcD-algebras

yield a similar result, with infinite distributivity(∨
xi
)
⊕p z =

∨
(xi ⊕p z)
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Discussion on PD → DP

There is probably no meaningful weak distributive law PD → DP

I There is no such distributive law.

I Imposing distributivity

x ∨ (y ⊕p z) = (x ∨ y)⊕p (x ∨ z)

leads to no quantitative content (Keimel - Plotkin 17)

A new argument is

Theorem (G.)
Even with finite P’s, there is no natural transformation α such that

PD DP

PP PP

Psupp

α

suppP

λ

where λ is the monotone weak distributive law PP → PP.

Future work: prove a no-go theorem.
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Generalised determinisation of alternating automata

sort of law λX (U) formula
∨∧

U CNF
trivial weak

⋃
U

∧∧
U DNF

trivial coweak {{x} | x ∈
⋃
U}

∨∨
U DNF

monotone weak
(
�
⋃

U∈U U
)
∩
(⋂

U∈U ♦U
) ∨∧

U DNF

I Using the monotone weak distributive law PP → PP:

y {y , z}

x z 7→ {x} {y , z ,w}

w {z ,w}

a

a

a

a

a

I Explains a semantically correct determinisation from (Klin - Rot 16)
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Compatibility of up-to techniques

Theorem (G.)
For an algebraic expansion due to a weak distributive law λ : TF → FT

I context is a compatible up-to technique

I congruence is a compatible up-to technique (if F weakly cartesian)

i.e. one can compute bisimulations up to ≡
I Accelerates computations of bisimulations

I Specific to weak laws: erases ’additional’ states due to weakness

I Explains bisimulation up-to convex hull for probabilistic automata

(Bonchi - Silva - Sokolova 17)
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Toposes and EE→ EE
Fact: every topos has a powerset monad E.

Theorem (G. - Petrişan - Aiguier ICALP’21)

I There is at most one monotone

weak

distributive law T E→ ET .

I Existence ⇐⇒ T functor, unit, multiplication are nearly cartesian

T preserves strong epis

Theorem (G. - Petrişan - Aiguier ICALP’21)
There is a monotone weak distributive law EE→ EE. In the internal
logic,

(t : ΩΩX

) ` λX (t) = {s : ΩX | (∀(x : X ), x ∈ s → x ∈ µ E
X (t)

∧ ∀(u : ΩX ).u ∈ t → ∃(x : X ).x ∈ u ∧ x ∈ s}

This is a distributive law iff the topos is degenerate.

I Generalisation of the monotone PP → PP in Set

I Intermediate result before KHaus
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Coq proofs for toposes
I Proofs in Coq ≡ proofs in the internal logic
I Prop ≡ subobject classifier

I ... and a formalisation of No PP → PP (Klin - Salamanca 18) 28 / 28



The conjecture RV → VR

Conjecture (Generalised DP → PD)
There is a monotone weak distributive law RV → VR. For m ∈ RVX ,

λX (m) =

{
m′ Radon measure on X such that
∀(C,B) ∈ VVX × VX ,

⋃
C ⊆ B ⇒ m(C) ≤ m′(B)

}

Proof.
I R preserves strong epis X

I R is nearly cartesian X

I multiplication is nearly cartesian ?

I Rel(R) preserves continuity ?

Expression of λ is obtained via (Edwards 78).
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Citations

The slides cite [16, 18, 22, 2, 20, 21, 14, 24, 23, 8, 1, 9, 10, 15, 19, 13,
11, 4, 12, 3, 5, 7, 17, 6]
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